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Preface

Solar photovoltaic energy systems (PVES) have been used to feed loads in remote
areas as well as in central power plants connected to the electric utility. Many
research works have been done to reduce the cost of the generated energy from the
PVES. One of the most important factors of research work is to reduce the cost of
generated energy by increasing the generated energy from the PVES by modifying
its performance operations. This can be achieved by tracking the maximum power
available from the PV systems which can increase the generated energy from PVES
considerably and reduce its cost. The device used to track the maximum power
available from the PVES is called maximum power point tracker (MPPT). MPPT
uses a controlled technique to control the power electronics converters to be sure it
extracts the maximum power available from the PVES. Conventional MPPT
techniques like perturb and observe, hill climbing, incremental conductance, etc.,
have been introduced a long time ago, and they were working for unshaded PVES
very well. But, in case of partial shading conditions, multi-peaks in the P-V curve
of the PV array are generated, and these peaks may trap the conventional techniques
to fall within one of the local peaks. With the advances of artificial intelligence, soft
computing, and metaheuristic techniques, this limitation can be overcome, whereas
metaheuristic techniques can track the global peaks in shaded or unshaded PVES
which became a new trend in the tracking of the maximum power of the PVES.
Many metaheuristic techniques are introduced and discussed in this book like
particle swarm optimization (PSO), gray wolf optimization (GWO), genetic algo-
rithm (GA), ant colony optimization (ACO), whale optimization (WO), simulated
annealing (SA), etc. Also, hybrid techniques between the metaheuristic and con-
ventional techniques or two hybrid metaheuristic techniques are introduced in many
chapters of this book.

This book introduces many chapters to deal with the maximum power tracking
of the PVES using modern MPPT techniques. This book introduces an overview
of the modeling of PVES and its performance characteristics in different operating
conditions. Also, a detailed description of the maximum power point variations in
case of shaded and unshaded conditions is presented. A detailed historical review
of the conventional and modern MPPT technique is also introduced to shed a light
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on the development in this field. The most advanced techniques used as an MPPT
are introduced and discussed in this book. Many techniques to deal with the effects
of the partial shading on the PVES are also introduced and discussed. Many
practical projects in this field are introduced and discussed in detail. Also, detailed
power electronics circuits used as DC-DC converters have been introduced and
discussed in detail in many chapters of this book.

This book will be very interesting for the readers who are looking for using
PVES to feed loads in isolated areas as well as in the utility scale. It will also help
them to know the PVES characteristics, modeling, operation, challenges, maximum
power tracking, and practical implementation. This book will help the researchers,
designers, and operators, as well as undergraduate/postgraduate students, to be
familiar with the new trends of the field of PVES in general and MPPT in specific.

Mansoura, Egypt Ali M. Eltamaly
Cairo, Egypt Almoataz Y. Abdelaziz
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History of Maximum Power Point
Tracking

Mazen Abdel-Salam, Mohamed-Tharwat EL-Mohandes
and Mohamed Goda

Abstract With time, the conventional fossil fuels for generating electric loads are
depleted, so efforts are made to harness PV solar energy to serve the continuously
increasing electric loads. The energy conversion efficiency of PV modules is very
low, while they are expensive in price. This calls for operating themodule at the max-
imumpower point at all operating conditions. There exist numerousmaximumpower
point tracking techniques in today’s market to maintain the operation of PV module
at maximum power such as off-line techniques, on-line or hill-climbing (HC) tech-
niques and artificial intelligence (AI) techniques. Numerous approaches for improv-
ing, adapting, and optimizing these techniques have been published. However, they
differ in many aspects such as tracking speed, tracking accuracy, steady-state effi-
ciency and dynamic efficiency, number of sensors used, complexity, and cost. These
MPPT techniques fail or deviate from tracking the correct maximum power point
(MPP) under sudden or ramp variations of solar irradiation and ambient temperature
as well as under partial shading with oscillations aroundMPP. From 1954 to 2018, all
the researchers focused on MPPT, which is the main target of this chapter to follow
up the history of development maximum power point tracking in PV systems as well
as exploring the advantages and disadvantages of the many proposedMPPTmethods
in the literature. The history includes the off-line and on-lineMPPT techniques along
with their improvements as documented in the literature over the period 1954–2018.
This chapter is framed as a review chapter.

M. Abdel-Salam · M.-T. EL-Mohandes
Electrical Engineering Department, Assiut University, Assiut, Egypt

M. Goda (B)
Electrical Engineering Department, Ahram Canadian University, Giza, Egypt
e-mail: goda.masr@hotmail.com

© Springer Nature Switzerland AG 2020
A. M. Eltamaly and A. Y. Abdelaziz (eds.), Modern Maximum Power Point
Tracking Techniques for Photovoltaic Energy Systems, Green Energy
and Technology, https://doi.org/10.1007/978-3-030-05578-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05578-3_1&domain=pdf
mailto:goda.masr@hotmail.com
https://doi.org/10.1007/978-3-030-05578-3_1


2 M. Abdel-Salam et al.

1 Introduction

In 1954, Fuller et al. had received a patent-pending prize in physics for their first
practical photovoltaic cell.

When the PV module is directly coupled to a resistive load, “e.g., DC lamp”
as shown in Fig. 1, or to a dynamic load, “e.g., DC motor” as shown in Fig. 2,
the module output current (I) and voltage (V ) depend on the module’s operating
point. The module’s operating point is located at the intersection of module and load
I–V curves as shown in Fig. 3. Unfortunately, the module I–V curve is non-linear
with only one maximum power point (MPP) at which the intersection rarely occurs.
Also, the module I–V and P–V curves change under varying irradiation and ambient
temperature conditions making the new location of the MPP as shown in Fig. 4.
When the module/array is partially shaded, the P–V curve has multi-peaks as shown
in Fig. 5.

Starting in “1954,” the maximum power point tracking (MPPT) is the aim of
researchers to enhance efficiency and improve the performance of the PV systems.

MPP trackers are divided into two types:mechanical single- and dual-axis trackers
and electrical trackers. Themechanical tracker “sun tracker” is a way to direct the PV
module to follow the sun.However, this type is complex and costly in implementation
and has low efficiency. Therefore, all attempts by scientists have been directed toward
electrical tracking.

Electrical MPPT techniques are classified into three families: (i) off-line tech-
niques such as fractional open-circuit voltage (FOCV) and fractional short-circuit

Fig. 1 PV panel connected
to a resistive load (R)

Fig. 2 PV panel connected
to a dynamic load



History of Maximum Power Point Tracking 3

Fig. 3 Location of operating point as influenced by load resistance (R)

Fig. 4 Location of MPP as influenced by irradiation level

current (FSCC) techniques; (ii) on-line or hill-climbing (HC) techniques such as
perturb-and-observe (P&O) and incremental conductance (InCond) techniques; (iii)
artificial intelligence (AI) techniques including fuzzy logic control (FLC) technique,
artificial neural network (ANN) technique, particle swarm optimization (PSO) tech-
nique, and genetic algorithm (GA), Fig. 6.

TheseMPPT techniques fail or deviate from tracking the correct maximum power
point (MPP) under sudden or ramp variations of solar irradiation and ambient tem-
perature as well as under partial shading with oscillations around MPP as shown in
Fig. 7. This chapter is aimed at reporting on the history of the off- and on-line MPPT
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Fig. 5 Multi-MPP under partial shading conditions

Fig. 6 MPPT techniques

techniques along with their improvements as documented in the literature over the
period 1954–2018.

From 1954 to 1988, all the researchers focused onMPPT by selecting the module
and/or load to ensure that the intersection point of the module and load current–volt-
age characteristic curves lies near to the MPP. Because this matching is not always
satisfied under varying irradiation level and ambient temperature, some researchers
over this period tried to find proper parameters of a battery to be connected to the PV
system in order to improve the matching between module and load characteristics.

In 1961, Hooke et al. made a design study on a resistive load to ensure that
the intersection point of the I–V curves of the module and a resistive load is the
MPP. In 1976, Biran et al. made a design study on a dynamic load to ensure that
the intersection point of the I–V curves of the module and a dynamic load is the
MPP. In 1977, Braunstein made a design study on a battery load to ensure that the
intersection point of the I–V curves of the module and a battery load is the MPP.
In 1977, Appelbaum focused in his design study on both resistive load and storage
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Fig. 7 Challenges facing MPPT techniques

battery fed from a PV system. In 1985, Anis et al. focused in their design study on a
volumetric pump driven by a PV system. In 1988, Saied et al. focused in their design
study on DC motor supplied by a PV system. In 1989, Khouzam et al. focused in
their design study on centrifugal pumps driven by a PV system.

2 On-line Techniques

The name of “on-line” refers to operation of the MPP tracker with no need to switch
the PV system off. The on-line or hill-climbing (HC) techniques were introduced
before the off-line techniques. The on-line techniques include perturb-and-observe
(P&O) and incremental conductance (InCond) techniques. The classical P&O tech-
nique had preceded the classical InCond technique in PV applications.

2.1 Classical Perturb-and-Observe (P&O) Technique

In this technique, the tracker of the classical P&O technique is based on perturbing
the module operating voltage in any direction whatever increase or decrease of its
value and observing the polarity of output power which detects the direction of the
coming perturbation. The steady-state efficiency of the classical P&O technique is
equal to 96.98%, and its dynamic efficiency is equal to 91.9% [1].
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2.1.1 History of the Classical Perturb-and-Observe (P&O) Technique

In 1979, Fox et al. had the primacy in underlining the principle of P&O by using
the fundamentals of hill-climbing technique which is a mathematical optimization
technique that belongs to the family of local search. Schoeman et al. [2] presented the
final version of the computational flowchart of the classical P&O technique. Since
then, the researchers have been pursuing the development of this classical P&O
technique based on the following directions:

Hint: All the modified P&O techniques proposed by Refs. [1, 3–18] are explained
in detail in Chapter I through step-by-step flowcharts with particular emphasis on
their advantages and drawbacks.

(i) Using variable step size to improve performance [7, 10, 16–27], Fig. 8.

Fig. 8 History of P&O technique as regards fixed step size, combination, observation (�I, �V,
�P), three-point comparison, and variable step size
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In 2004,Xiao et al. proposed amodified adaptive hill-climbing (MAHC) technique
based on variable step size. The voltage step size is updated on-line to be suitable
for the sudden changes in irradiation level. The steady-state efficiency of the MAHC
technique is equal to 97.3%, and its dynamic efficiency is equal to 96.3%.

In 2015, Ahmed et al. proposed a technique based on an adaptive step size (�V ) in
the range 0.5–2% of the open-circuit voltage. The ratio�P/P is considered to prevent
the tracker from failing in tracking the correct MPP under sudden variation of solar
irradiation. Moreover, the dynamic efficiency is improved by 2% in comparison with
the classical P&O technique. The steady-state efficiency of the proposed technique
is equal to 96%, and its dynamic efficiency is equal to 93.9%.

In 2013, Bennett et al. proposed a modified P&O technique based on solving
two problems facing the classical one: (i) trade-off problem between its tracking
speed and oscillation amplitude at uniform irradiation level and (ii) Its failure under
increasing/decreasing irradiationwith slopes. The proposed technique starts at 0.85%
Voc and then uses small voltage step. The step size is decremented by 50% when the
voltage becomes close to Vmpp, the voltage corresponding to the maximum power
point. The steady-state efficiency of the proposed technique is equal to 97.1%, and
its dynamic efficiency is equal to 96.33%.

(ii) Using thresholdmodule current-based parameter to improve its dynamic
efficiency [28], Fig. 9.

In 2001, Chih-Chiang et al. proposed a technique based on an extra loop to be
combined with the classical technique to solve the problem of sudden variation of
solar irradiation. This loop includes a threshold current parameter to detect if there
is a variation in irradiation level. The steady-state and dynamic efficiencies of the
proposed technique are equal to 83.6%.

(iii) Using fixedperturbation step size to improve performance [29–39], Fig. 8.
In 1996, Atlas et al. touched the trade-off problem between the tracking speed and

oscillation amplitude for the classical P&O technique. The authors used a suitable
fixed step size to increase the tracking speed and decrease the oscillation amplitude
too. However, the results showed that the oscillations were not damped completely
but the tracking speed was increased.

In 2001, Yeong-Chau et al. tried to solve the problem of sudden variation of solar
irradiation by using fixed step size and irradiation sensor. The dynamic efficiency is
improved, but the dependency of the system on the irradiation sensor increases its
cost and complexity.

In 2003, Noguchi et al. proposed a modified P&O technique with PI controller to
solve the trade-off problem between the tracking speed and steady-state oscillations.
The results showed better performance as regards damping the oscillations, but the
tracking speed remained the same as the classical one.

In 2004, Liu et al. proposed a new scheme to implement the classical P&O tech-
nique for a DC–DC boost converter. It employs peak current control and instanta-
neous values to calculate the direction of the next perturbation.

In 2005, Salas et al. captured the correct MPP under sudden variation of solar
irradiation with satisfactory efficiency that reached 97%. The proposed technique
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includes a fixed step size under steady-state and dynamic conditions. However, the
slope variations of solar irradiation are not considered.

In 2012, Gomathy et al. simulated a different MPPT technique in MAT-
LAB/Simulink which was used for controlling the duty cycle of DC–DC boost con-
verter. A modified P&O technique with fixed step size was considered and showed
better performance as regards tracking speed.

In 2013,William et al. presented amodification on the tracker of the classical P&O
technique and applied it on street lighting systems. The validation of the proposed
design has been carried out by simulations and experimental results. The results
showed better performance as regards the tracking speed and stead-state efficiency.
The dynamic efficiency did not exceed 84% according to the results.

In 2014, Selmi et al. presented an implementation for the classical P&O technique
and improvement for its performance under sudden variation of solar irradiation.
However, this implementation was not tested under ramp variations of irradiation
level or ambient temperature.

Fig. 9 History of P&O technique as regards maximization of dynamic performance, bandwidth,
threshold module current, decoupling, and partial shading
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In 2015 Kill et al. proposed an enhanced technique called “Drift-free modified
P&O technique.” This technique is based on perturbing the operating voltage (�V )
and observing the output current (�I) and power (�P). This technique focuses only
on capturing the correct MPP under increasing irradiation level only. This technique
is not able to track the correct MPP when the irradiation is suddenly decreased. The
steady-state efficiency of the proposed technique is equal to 98.15%, and its dynamic
efficiency is equal to 96%.

(iv) Three-point comparison instead of two-point comparison as in the clas-
sical P&O technique [11, 40] Fig. 8.

In 2005, Jiang et al. proposed a technique in an attempt to avoid the oscillation
problem of the voltage perturbation and the problem of sudden variation of solar
irradiation. In comparison with the classical one, the technique of the three-point
weight comparison perturbs the module operating voltage and compares the module
output power at three points of the P–V curve. The steady-state efficiency of the
proposed technique is equal to 97%, and its dynamic efficiency is equal to 92%.

(v) Bandwidth of the P–V curve of the module [15], Fig. 9.
In 2005, Jung et al. proposed an improved perturb-and-observe (IP&O) technique

based on the bandwidth of the module P–V curve. This technique presents better
tracking speed without a satisfactory increase in dynamic efficiency. In addition to
that, the tracker is complex.

(vi) Combination of the classical P&O technique with other tracking techniques
to improve its performance [6, 41–52], Fig. 8.

In 2005,Dorofte et al. proposed a technique based on combining the classical P&O
technique with the fractional open-circuit voltage (FOCV) technique to increase the
steady-state accuracy and the tracking speed of the classical P&O method. The
steady-state efficiency of the proposed technique is equal to 97%, and its dynamic
efficiency is equal to 95%.

In 2010, Jung-woo et al. combined perturb-and-observe technique with the frac-
tional open-circuit voltage technique (FOCV) technique. The authors used the FOCV
technique only at tracker start-up. The FOCV interrupts the output current to let the
tracker record the open-circuit voltage with a subsequent power loss in the PV sys-
tems. In 2011, Mei et al. combined a modified P&O technique with fuzzy logic
technique to improve the dynamic efficiency. The authors compared the results with
the classical P&O technique by using PV module (MSX60), DC–DC buck con-
verter, and resistive load. The results showed that the combined technique has better
performance when compared with the classical one.

In 2016, Mohapatra et al. presented a combination between the classical P&O
method and the NN method where the irradiation level and ambient temperature are
input variables. The current (IMPP) and voltage (VMPP) values corresponding to the
MPP were collected at different irradiation levels and ambient temperature values.
This NN-based MPPT tracker showed a better performance when compared with
the classical one. The steady-state and dynamic efficiency values of the proposed
technique are equal to 96%.
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(vii) Decoupling of voltage perturbation from that due to sudden variation
of irradiation level and ambient temperature [3–5, 13, 53], Fig. 9.

In 2006, Sera et al. presented dP-P&O technique to modify the dynamic perfor-
mance of the classical perturb-and-observe technique by decoupling the change in
module output power due to weather changes and the change inmodule output power
due to voltage perturbation by recording an additional measurement in the middle
of perturbation step. The steady-state and dynamic efficiency values of the dP-P&O
technique are 99.6%.

In 2007, Yafaoui et al. tried to separate the change in module output power due to
weather changes from the change in module output power due to voltage perturba-
tion by proposing a modified perturb-and-observe technique (MP&O). The MP&O
technique depends on using an estimate process in every perturbation step. The
steady-state efficiency of the dP-P&O technique is 97.5%. The dynamic efficiency
of the dP-P&O technique is 95%. The tracking speed of the classical P&O technique
is doubled that of the MP&O technique because of the delay time due to the estimate
process.

In 2016,Mamatha presented amodified technique based on decoupling the change
in module output power due to voltage perturbation and irradiation level change. The
proposed technique is almost similar to the technique by [3] but with low tracking
efficiency. The steady-state and dynamic efficiency values of the proposed technique
are equal to 94.8%.

(vii) Using datasheet parameters [14], Fig. 10.
In 2007, Azab proposed an enhanced perturb-and-observe technique. This

enhanced technique is based on defining theMPP value according to the datasheet of
the PV module, which is the drawback of the technique. The steady-state efficiency

Fig. 10 History of P&O technique as regards minimization of dynamic performance, datasheet
parameters, observation (�V, �P), voltage-hold P&O, and curve-fitting
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of the proposed technique is equal to 95%, and its dynamic efficiency is equal to
95%.

(viii) Doing curve-fitting to improve dynamic efficiency under sudden varia-
tion of irradiation level or ambient temperature [12], Fig. 9.

In 2010, Khatib proposed a curve-fitting-based technique to improve the perfor-
mance of the classical P&O by determining an optimum module voltage close to
that corresponding to the max power (Vmpp) as determined from the datasheet of the
PV module. Then, the classical P&O technique was applied with a small step size
until reaching the real MPP. This attempt to improve the performance of the classical
P&O technique did not provide satisfactory results where the average efficiency did
not exceed 89.2%.

(ix) Voltage-hold perturbation and observation [9], Fig. 10.
In 2011, Abdallah et al. proposed a modified technique based on the voltage-hold

perturbation and observation “VH-P&O” to track correctly theMPPunder irradiation
changes. The voltage across a capacitor is related to the increment/decrement of
the module output current being dependent on the irradiation level. The VH-P&O
technique does not perturb the operating voltage under suddenly changed irradiation
but before exceeding theMPP voltage and directly forces the voltage to the capacitor,
which is the important tracking parameter in this technique. The steady-state and
dynamic efficiency values of the proposed technique are equal to 91%.

(x) Observation of the changes in module output voltage and power [8],
Fig. 10.

In 2017,Kamal et al. proposed an improvedP&Otechnique to solve the problemof
the classical technique under sudden variation of solar irradiance. In this technique,
the polarity of the voltage perturbation (�V ) and power change (�P) was taken
into account and multiplied together to decide where the next perturbation will be
directed. The tracking efficiency showed overshoot values that can reach unjustified
hypothetical values up to 400%.

(xi) Solving the problem of partial shading [27, 54–61], Fig. 9.
In 2003, Kobayashi et al. applied a two-stage MPPT control technique to realize

a relatively simple control system which can track the real maximum power point
even under non-uniform irradiation levels. The feasibility of this control concept
is confirmed for steady irradiation as well as for rapidly changing irradiation by
simulation study using software PSIM and LabView.

In 2007, Amrouche et al. proposed a modified technique to solve the problem
of partial shading. This technique was based on combination of P&O and artificial
neural network technique.

In 2015,Bharath et al. used an enhanced version of perturb-and-observemaximum
power point tracking technique considering local maxima and minima caused by
shading to select where to track the global maximum power and to make the solar
panel to work at the global maximum power. This helps in improving the overall
efficiency of the system. The technique was implemented on a 50-W solar panel
using microcontroller and a boost converter.
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In 2016, Zengrui et al. proposed a novel maximum power point tracking (MPPT)
control technique for PV system based on an improved particle swarm optimization
(PSO) technique and variable step perturb-and-observe (P&O) technique. Firstly,
the PSO is to search for the global maximum power point. Then, the variable step
P&O technique is used to track the global maximum power point (GMPP) accurately
which changes according to the environmental conditions.

In 2017, Soedibyo et al. combined the P&O technique with the InCond technique
to track the MPP under partial shading conditions. The results of the simulation
indicated that the power output of the module covers 99.4% of the load demand in
the investigated system.

(xii) Maximization of dynamic performance [48, 62–68], Fig. 9.
In 2003, Hua et al. proposed a modified P&O technique to capture the correct

MPP under sudden variation of solar irradiation. The results showed that the tracker
of the proposed technique had high tracking speed in response to the sudden changes
of irradiation level.

In 2015, Jiang et al. proposed a modified P&O technique based on its combina-
tion with InCond technique. The results showed better performance under sudden
variation of solar irradiation. However, the performance of the tracker under ramp
variation of irradiation level was not discussed.

(xiii) Minimization of oscillation amplitude [10, 69–72], Fig. 10.
In 2005, Femia et al. proposed an optimized perturb-and-observe (OP&O) tech-

nique based on an adaptive step size to solve the problem of oscillation around the
MPP which faces the classical one. The steady-state accuracy of this technique is
better than that of the classical one. However, the trade-off problem between tracking
speed and tracking accuracy remains unsolved.

In 2015, Zakzouk et al. proposed a modified P&O technique depending on a vari-
able perturbation step during sudden variation of ambient temperature. The technique
depends on voltage perturbation �V, corresponding power change �P, and �P/�V.
The steady-state and dynamic efficiency values of the proposed technique are equal
to 99.8%.

(xiv) Observation of the change of module output current, voltage, and power
[73, 1], Fig. 8.

In 2006, Kim et al. proposed a modified P&O technique based on sensing current
along with the voltage as well as observing polarity of current change and the corre-
spond power change. The proposed technique is based on the use of expensive current
sensor. However, it presents better performance than the classical P&O technique.

In 2018, Abdel-Salam et al. proposed a modified P&O technique. The authors
used the polarity of the module current change �I corresponding to voltage change
�V and �I/�V to direct the tracker to the correct MPP whatever the value of the
change in irradiation level. The steady-state efficiency of the proposed technique is
equal to 99.48%, and its dynamic efficiency is equal to 98.03%.
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2.2 Incremental Conductance (InCond) Technique

The mechanism of the incremental conductance technique is that the slope of the
moduleP–V curve is equal to zero at theMPP (e.g., dP/dV = 0 or dP/dI = 0 atMPP).
For operating point located to the right of the MPP, the tracker moves the operating
point toward theMPP by decreasing the operating voltage with a subsequent increase
in the output power; i.e., the slope dP/dV is negative (dP/dV < 0 to the right of the
MPP).On the other hand,when the operating point is located to the left of theMPP, the
trackermoves the operating point toward theMPPby increasing the operating voltage
with a subsequent increase in the output power; i.e., the slope dP/dV is positive
(dP/dV > 0 to the left of the MPP). The incremental-conductance-technique-based
tracker compares the operating conductance (I/V ) with the incremental conductance
(�I/�V ). The correct MPP is captured when (�I/�V ) is equal to (−I/V ).

2.2.1 History of Incremental Conductance (InCond) Technique

The first researcher who discovered the classical incremental conductance technique
is “Wasynezuk” in 1983, Fig. 10. “Phang et al. [74], Won et al. [75]” followed
“Wasynezuk” in improving his version, Fig. 10. In 1995, Hussein et al. presented the
final version of the computational flowchart of the classical incremental conductance
technique with a “patent pending,” Fig. 10. There are many attempts to improve its
performance in the literature based on the following directions:

(i) Using fixed perturbation step size [12, 24, 76–86], Fig. 11.
In 1997, Sugimoto et al. suggested a modified InCond technique to track cor-

rectly the MPP under sudden variation of solar irradiation. The module current is the
main parameter to detect the occurrence of sudden variation of solar irradiation. The
tracking speed was increased. However, the dynamic efficiency did not exceed 83%.

In 1999,Brambilla et al. proposed amodified InCond technique basedonfixed step
size to overcome the trade-off problem between the tracking speed and oscillations
around the MPP. The steady-state error did not exceed 2.5%.

In 2013, Mahamudul et al. proposed a modified InCond technique to maximize
the tracking efficiency. The steady-state efficiency of the modified technique was
98 against 97% for the dynamic efficiency. However, this technique was not tested
under ramp variation of solar irradiation or ambient temperature.

(ii) Combination with other tracking techniques to improve its performance
of the classical InCond technique [43, 87–96], Fig. 11.

In 2000, Irisawa et al. proposed a novel MPPT technique, based on combining the
incremental conductance and the classical P&O techniques to solve the problem of
oscillation facing the classical InCond method and the problem of sudden variation
of irradiation level. The performance of this technique is better than the classical
one as documented in their results. However, this method was not tested under ramp
variations of irradiation level or ambient temperature.
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Fig. 11 History of InCond technique as regards fixed step size, combination, partial shading, and
improved Wasynezuk’s version

In 2012, Abdulkadir et al. combined a modified InCond technique with artificial
neural network (ANN) technique. The MPPT system has been tested using a 100-W
module under various operating conditions. The obtained results have proven that
the MPP is tracked even under a sudden change in irradiation level. However, the
oscillation amplitude around the MPP is high when compared with the classical
InCond technique.

In 2014, Radjai et al. combined the classical InCond technique with fuzzy logic
technique to overcome the problem of varying irradiation level. The dynamic effi-
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ciency of this technique is 96%. However, the tracking speed is similar to that of the
classical InCond technique.

In 2017, Lian et al. tried to solve the problem of partial shading by combining a
modified INC technique and simulated annealing (SA) techniques. Themodified INC
technique employs an adaptive step size to increase the tracking speed and accuracy
of the conventional INC. On average, the tracking time of the proposed technique is
two times shorter than the SA technique when used alone for MPPT.

In 2015, Radianto et al. presented a hybrid MPPT composed of two techniques:
incremental conductance (INC) and fuzzy logic (FL) control. This technique was
found able to trackmaximumpower point (MPP) under variable solar irradiance. The
results showed that the proposed technique can trackMPP under different irradiation
levels. However, thismethodwas not tested under ramp variations of solar irradiation.

(iii) Solving the trade-off problem between tracking speed and oscillation
amplitude [45, 97–105], Fig. 12.

In 2008, Cha et al. tried to use the InCond technique to solve the trade-off problem
between the tracking speed and oscillation amplitude. The tracking accuracy of this
technique is better than the classical InCond technique. However, the tracking speed
is similar to that of the classical InCond technique.

(iv) Solving the problem of partial shading [106–110], Fig. 11.
In 2008, Patel et al. proposed amodified InCond technique to solve the problem of

partial shading. The tracker of this technique showed better performance in capturing
the global maximum power point. However, oscillations remained around the MPP
the same as the classical InCond technique.

In 2009, Ji et al. proposed a modified technique to capture the correct MPP under
partial shading conditions. This modified technique was based on the InCond tech-
nique with a variable step size. This tracker based on this technique tries to scan all
P–V curves and record the current and voltage for all local and global multi-peaks
points. Then, it forces the operating point to stick at the highest peak.

(v) MPPT-based incremental resistance [45], Fig. 12.
In 2011, Mei et al. proposed a current-controlled variable-step-size incremen-

tal resistance MPPT technique to solve the problem of slow tracking speed under
dynamic conditions and the problem of oscillations under steady-state conditions.
The dynamic efficiency of this technique lies in the range 96–97.5%. However, its
tracking accuracy is low when compared with the classical InCond technique.

(vi) MPPT-based power increment [82, 111], Fig. 12.
In 2012 and 2013, Hsieh et al. proposed a modified InCond technique based on

power increment to solve the problem of low tracking speed of the tracker when the
operation point is located to the left of the MPP on the I–V curve. The low tracking
speed is attributed to the insignificant change of module output current which is the
main parameter of the InCond technique. This is why the tracker cannot detect if
there is a change in irradiation or no.
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Fig. 12 History of InCond technique as regards variable step size, solving the trade-off problem,
MPPT-based power increment, and MPPT-based increment resistance

(vi) Using variable step size [27, 95, 98, 112–122], Fig. 12.
In 2006, Bruendlinger et al. proposed a variable-step-size incremental conduc-

tance technique to solve the problem of varying irradiation level. This technique
applied large step size when the operating point is far from the MPP and small step
size when the operating point is close to the MPP. The tracking efficiency is 2.4%
superior to the classical InCond technique.



History of Maximum Power Point Tracking 17

In 2007, Xiao et al. proposed an adaptive InCond technique to track correctly
the MPP under sudden variation of solar irradiation and ambient temperature. The
step size is varying on-line after the tracker senses the module output current. This
technique showed better performance as regards the dynamic efficiency. The steady-
state error did not exceed 1%. However, the tracking speed is similar to that of the
classical InCond technique. Moreover, this technique was not tested under ramp
variations of solar irradiation or ambient temperature.

In 2017, Anuradha et al. proposed a modified InCond technique with a variable
step size. This technique was tested under sudden and ramp variations of solar irra-
diation and ambient temperature. The dynamic efficiency did not exceed 98%.

3 Off-line Techniques

The name of “off-line” refers to switching off the PV system, so the tracker can
state its operation following one of these techniques. Off-line techniques include
fractional open-circuit voltage (FOCV) and fractional short-circuit current (FSCC)
techniques.

3.1 Fractional Open-Circuit Voltage (FOCV) Technique

This technique is also named constant-voltage technique. The tracker based on this
technique selects the operating voltage equal to (70–85%)Voc where Voc is the open-
circuit voltage of themodule. This is themaindrawbackof this technique as it depends
on the value of the open-circuit voltage. This calls for interrupting the module output
current in order to measure the value of the open-circuit voltage making with a
subsequent significant power loss in large PV systems. As the open-circuit voltage
varies with weather condition, “e.g., ambient temperature or/and irradiation level,”
the researchers always support this technique by combination with other MPPT
techniques, so the tracker can work satisfactorily under all operating conditions.

3.1.1 History of Fractional Open-Circuit Voltage (FOCV) Technique

Fractional open-circuit voltage (FOCV) or constant-voltage (CV) technique does not
address high tracking efficiency unless it is combined with other MPPT techniques
[10, 22, 51, 56, 102, 123–156], Fig. 13.

In 2005, Dorofte et al. proposed amodifiedMPPTmethod based on combining the
classical P&O technique with the fractional open-circuit voltage (FOCV) technique.
This modified method aims at overcoming the trade-off problem between tracking
speed and tracking accuracy as mentioned in Chapter I. The steady-state efficiency
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Fig. 13 History of FOCV technique

of the proposed technique is equal to 97%, and its dynamic efficiency is equal to
95%.

In 2008, Yuvarajan et al. proposed a modified P&O technique depending on
fractional open-circuit voltage (FOCV) technique. The dynamic efficiency of the
proposed technique is equal to 98.5%. The proposed technique is more accurate
when compared with the classical P&O.

In 2016, Shebani et al. proposed a bisection numerical technique (BNA) based
on FOCV technique. The BNA technique showed more accuracy when compared
with FOCV technique under different irradiation levels. The proposed method has



History of Maximum Power Point Tracking 19

dynamic efficiency equal to 96.7%. The implementation of this technique is very
complex when compared with the FOCV technique.

In 2006, Cesare et al. tried to increase the efficiency of the classical P&O technique
byusingFOCV technique and adaptiveP&Omethod.Themodel consists of PVarray,
DC–DC converter, and a resistive load. The results showed better performance when
compared with the classical one. The steady-state accuracy and tracking speed are
improved when compared with the classical P&O technique.

In 2007,Mukerjee et al. combined the P&O technique with FOCV. This technique
addressed two issues. A variable-step-length techniquewas proposed to eliminate the
trade-off problem between accuracy and tracking speed. The deviation from tracking
the MPP is minimized.

In 2008, Yuvarajan et al. proposed a modified InCond technique depending on the
open-circuit voltage and the short-circuit current techniques. The MPPT technique
was validated under different values of irradiation level. The tracking speed and the
steady-state efficiency are improved.

In 2009, Hu et al. proposed a technique to combine FOCV and a numerical
analysis based on “quadratic interpolation.” An additional loop was proposed to
include constant-voltage technique. This loop is used next to the classical InCond
technique to enhance the dynamic efficiency under varying irradiation level. This
technique captured the MPP with dynamic efficiency reached to 98%.

In 2012, Xiong et al. combined InCond and FOCV techniques to overcome the
trade-off problem between the tracking speed and oscillation amplitude. The tracking
speed of this modified technique is superior to that of the classical InCond technique.

In 2013, Eltawil et al. used FOCV technique in controlling three-phase grid-
connected PV system. The tracking speed of the proposed tracker is high when
compared with other modified techniques.

In 2014, Cristian et al. proposed a new MPPT scheme based on FOCV to solve
the problem of sudden variation of solar irradiation. The steady-state and dynamic
efficiency values are 95 and 94%, respectively.

3.2 Fractional Short-Circuit Current (FSCC) Technique

This technique is also named constant-current technique. The tracker based on this
technique selects the operating current equal to (78–90%) Isc where Isc is the short-
circuit current of themodule. This is themain drawback of this technique as it depends
on evaluating the value of the short-circuit current. This calls for disconnecting and
short-circuiting the module to measure the value of the short-circuit current. The
disconnection of the PV module results in a power loss. As the short-circuit current
varieswithweather condition, “e.g., irradiation level,” the researchers always support
this technique by combination with other MPPT techniques, so the tracker can work
satisfactorily under all operating conditions.
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Fig. 14 History of FSC technique

3.2.1 History of Fractional Short-Circuit Current (FSCC) Technique

Many authors tried to support fractional short-circuit current (FSCC) technique to
make it applicable to work under all operating conditions by combination with other
MPPT techniques [49, 51, 72, 102, 131, 138, 142, 143, 146, 147, 157–170], Fig. 14.

In 2000, Noguchi et al. proposed a novel MPPT technique based on fractional
short-circuit current to find an optimum operating current under different operating
conditions for MPP tracking. The performance of the technique is different from the
classical hill-climbing techniques. Its steady-state and dynamic efficiency values are
93 and 92%, respectively.
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In 2007, Yuvarajan et al. proposed a modified P&O technique depending on
fractional short-circuit current (FSCC) technique. The dynamic efficiency of the
proposed technique was found equal to 98.5%. The proposed technique is more
accurate when compared with the classical P&O.

In 2011, Kumara et al. proposed a modified technique to solve the problem of
oscillations and sudden variation of solar irradiation. This modified technique is
based on a combination of the classical perturb-and-observe (P&O) technique and
FSCC technique. The proposed technique showed better performance as regards the
reduction in the oscillation amplitude, but tracking theMPP under varying irradiation
level was not efficient.

In 2012, Pardhan et al. proposed a new digital double-integral sliding-mode con-
troller based on fractional short-circuit current (FSCC) technique to improve the
dynamic efficiency of the MPP tracker. The dynamic efficiency of the proposed con-
troller reached 99.5%. However, the oscillations around the MPP were not damped
completely.

In 2013, Dahmane et al. used the fractional short-circuit current (FSCC) with a
genetic algorithm (GA) to track the correct MPP under partial shading conditions.
This modified technique captured the global maximum power point (GMPP) with
dynamic efficiency that reached 97.5%

In 2014, Kumar et al. used the fractional short-circuit current (FSCC) combined
with variable step size P&O technique to track the correct MPP under sudden and
ramp variations of solar irradiation. This technique showed better performance when
compared with the classical P&O method.

In 2015, Sher et al. proposed a hybridMPPTmethod based on combining the frac-
tional short-circuit current (FSCC) and hill-climbing (perturb-and-observe—P&O)
method. The proposed MPPT uses a current threshold parameter to determine the
change in irradiation level. This method was tested under sudden variation of irradi-
ation level and achieved steady-state efficiency equal to 98.51 against 97.77% for the
dynamic efficiency. Moreover, this method is better in performance when compared
with the classical P&O method. However, this method is not tested under ramp vari-
ation of solar irradiation. Moreover, the authors did not compare this method with
other modified P&O method proposed in the literature.

4 Conclusions

This chapter is aimed at reporting on the history of two families of maximum power
point tracking techniques: (i) off-line techniques such as fractional open-circuit volt-
age (FOCV) and fractional short-circuit current (FSCC) techniques and (ii) on-line or
hill-climbing (HC) techniques such as perturb-and-observe (P&O) and incremental
conductance (InCond) techniques along with their improvements as documented in
the literature over the period 1954–2018. The perturb-and-observe (P&O) method
is the most popular and common one because of its easy implementation. These
MPPT techniques fail or deviate from tracking the correct maximum power point
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(MPP) under sudden or ramp variations of solar irradiation and ambient temperature
as well as under partial shading with oscillations around MPP. The challenge among
the authors is directed toward a MPPT method capable to overcome all of these
drawbacks.
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PV Characteristics, Performance
and Modelling

Ali M. Eltamaly and Hassan M. H. Farh

Abstract This chapter discusses the photovoltaic (PV) characteristics, performance,
modelling, maximum power point tracker techniques and grid interconnection. It
covers four different PV generator models with their characteristics and their perfor-
mance analysis. In addition, the four most famous conventional MPPT techniques
with some of the soft computing MPPT techniques have been discussed including
detailed comparison, assessment, and discussion with the limitations, merits and
demerits of these MPPT techniques. Interconnection of the PV energy system with
electric utility has been discussed at the end of this chapter.

1 Introduction

Among all the renewable energy sources, photovoltaic (PV) represents a very impor-
tant and promising energy source where it provides very clean energy without any
environmental effect. Solar energy supply, the sunlight, is free and abundant source
of energy. However, currently solar PVmodules have a relatively low efficiency level
compared not only to the efficiency of conventional fossil fuel but also to the effi-
ciency of other renewable energy sources such as wind or hydro [1–4]. Improving
the efficiency of PV system through tracking the global maximum power from the
PV system with and without partial shading conditions is considered as a very hot
development area.

PVmodule consists of series and parallel PV cells to achieve high-voltage and cur-
rent output. The commonPVcell technologies can be classified intomulti-crystalline,
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mono-crystalline, thin-film and multi-junction PV cells. Each PV cell technology
has its own manufacturing process and characteristics. To investigate and study the
performance of the PV system, PV models are used to conclude the output PV
characteristics under different irradiance and temperature conditions. The PV model
generally consists of a photocurrent source, diodes and resistors. The most common
PV models are the single- and double-diode models [5]. The single-diode model
consists of five parameters, which are the PV current, diode saturation current, ide-
ality factor, series resistance and parallel resistance. This PV model has acceptable
accurate PV model estimation and low computation cost, whereas the two-diode PV
model has an additional parallel diode that is used to compensate the recombination
losses in the depletion region [6]. This increased the unknown parameters to become
seven parameters. The additional unknown parameters are the diode saturation cur-
rent and ideality factor. On the other hand, a three-diode PV model is proposed to
address the leakage current issue due to the periphery connected to the PV cell during
measurement [7].

The relation between the output power generated and output PV voltage for dif-
ferent radiations and temperatures is shown in Fig. 1, where each curve represents
certain radiation and temperature. A unique peak is generated under uniform radi-
ation as shown in this figure. In addition, the maximum power points (MPPs) are
located at different output voltages. For this reason, numerousMPP trackers (MPPT)
have been developed and discussed in many literatures such as [8–11]. On the other
hand, P–V characteristics contain multiple peaks (one global peak—GP and many
local peaks—LPs) under non-uniform or partial shading conditions (PSCs) andmost
conventionalMPPT techniques fail to track theGP [12, 13], whereas soft-computing-
based bio-inspired techniques such as flower pollination [14], ant bee colony [15,
16], firefly [17, 18], ant colony [19], cuckoo search [20], particle swarm optimization
(PSO) [10, 20–25], improved bat [26] and S-Jaya [27] algorithms can follow the GP
under partial shading condition.

This chapter discusses the PV characteristics, performance, modelling,MPPT and
grid interconnection. It covers four different PV generator models with their charac-
teristics and performance analysis. Also, the four most famous conventional MPPT

Fig. 1 P–V curves of PV
cell under different
environmental conditions
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techniques with some of the soft computing MPPT techniques are discussed includ-
ing detailed comparisons and discussion with the limitations, merits and demerits of
these MPPT techniques.

2 Photovoltaic Generator Models

2.1 Single-Diode Model

The single-diode model of a PV cell/module is shown in Fig. 2. It represents the
most common PV model due to the lowest number of physical parameters-based
model used. The model is typically used to determine I–V curves using either four
or five parameters: IL is the internal generated current of PV cell (light current), Io
is the diode reverse saturation current, RS is the series resistance, a is the modified
ideality factor, and RSH is the shunt resistance, which is assumed to be infinite in the
four-parameter version. The four-parameter simplifiedmodel is less computationally
intensive, and its accuracy for different technologies is debatable: Cristea et al. [28]
have revealed that it matches module I–V curves over a wide range of irradiance,
and Celik et al. [29] discovered that it overpredicts energy capture around solar
noon under high irradiance conditions [30]. The five-parameter version requires
numerical methods to be solved. Also, it can be developed using only manufacturers’
data provided at standard test condition (STC—1000 W/m2 and 25 °C). The main
equation that describes the single-diode model is introduced as follows:

I = IL − Io

[
exp

(
V + I RS

aVt

)
− 1

]
− V + I RS

RSH
(1)

where Io is the diode saturation current, a is the diode ideality factor, and Vt =
kT /q, represents the thermal voltage. The parameter k is the Boltzmann constant
(1.3806503 × 10−23 J/K), q is the electron charge (1.60217646 × 10−19 C), and T
is the temperature of the PV module in Kelvin.

Fig. 2 Equivalent circuit of
single PV diode model
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2.2 Two-Diode Model

The single-diode equation assumes a constant value for the ideality factor (a). In
practical, the ideality factor is a function of voltage across the device. At high volt-
age, when the recombination in the device is dominated by the surfaces and the bulk
regions, the ideality factor is close to one. However, at lower voltages, recombina-
tion in the junction dominates and the ideality factor approaches two. The junction
recombination is modified by adding a second diode in parallel with the first one and
setting the ideality factor typically to two. Two-diode model is a modified version of
single-diode PVmodel which takes into account the effect of recombination by intro-
ducing another diode in parallel as shown in Fig. 3. In the two-diode model, the first
diode is representative of the diffusion and surface recombination, and the second
diode accounts for recombination in the depletion region, which is most common at
higher irradiances. At low irradiance and temperatures, two-diode PV model gives
more accurate curve characteristics compared to single-diode model. The two-diode
model is especially suggested for accurate modelling of low irradiance conditions
[30]. A wide variety of research works have been done to implement a mathematical
model for PV cell. Two-diode model has been used in many literatures [31–33]. The
main expression that describes the two-diode model is introduced as follows:

I = IL − Io1

[
exp

(
V + I RS

aVt

)
− 1

]
− Io2

[
exp

(
V + I RS

aVt

)
− 1

]

− V + I RS

RSH
(2)

One downside to the two-diode model is the difficulty to determine its parameters
accurately. Ishaque et al. [6] solved the two-diode model as the single-diode model
is solved, and they discovered that it gives closer results between simulations and
measured data for a variety of panel types than the single-diode model. Given its
added complexity, unless the two-diode model allows for a significant increase in
accuracy, it likely makes more sense to continue to use and attempt to improve the
single-diode model [30].
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Fig. 3 Equivalent circuit of two-diode model
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2.3 Multi-diode PV Model

Figure 4 shows the equivalent circuit of multi-diode PV model. It includes the pho-
tocurrent source (IL), series and parallel diodes (Dnm) with n-by-m dimension, series
resistance (RS), and parallel resistance (RSH ). Rs is the sum of structure resistance,
and Rp represents the leakage current. By adding more diodes, the multi-diode PV
model has more degree of freedom to adjust itself to model the output characteristics
of different PV cells [5].

From Fig. 4, the output current I of the generalized multi-diode PV model is
introduced as follows:

I = IL −
n∑

i=1

Io,i

⎡
⎣exp

⎛
⎝ m∑

j=1

V + I RS

ai j NsVt

⎞
⎠ − 1

⎤
⎦ − V + I RS

RSH
(3)

where Io is the diode saturation current, a is the diode ideality factor, Vt = kT /q,
represents the thermal voltage, and Ns is the number of cells connected in series per
string. The parameter k is the Boltzmann constant (1.3806503 × 10−23 J/K), q is the
electron charge (1.60217646 × 10−19 C), and T is the temperature of the PV module
in Kelvin.

2.4 Empirical PV Models

Themost empirical PVmodel used in the USA is the King/SandiaModel [34], which
contains many detailed empirical factors proved from linear fits of I–V hundreds’
curves at different irradiance and temperatures. Although theK /Smodel has themost
accurate modelling across a wide range of operating conditions and technologies,
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Fig. 4 Equivalent circuit of multi-diode PV model
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particularly non-crystalline-silicon technologies, the empirical coefficients have only
been determined for limited PV modules because I–V curve collection to generate
the coefficients is very time consuming. A recent NIST study [35] compared K /S
model tomeasured data over a year for four different technologiesmounted vertically,
and they matched within 5–6% on both a monthly and annual basis. Matching was
worst during the summer when the sun’s angle of incidence was highest, suggesting
reflective or other spectral light losses that may not have been accounted for in the
model.

A comparison between the models available in NREL’s System Advisor Model
(SAM), including both theK /S and the CEC single-diodemodels, is achieved in [36],
comparing them to measured data from a crystalline silicon array in Albuquerque,
NM. In this sunny climate, the two PV models has similar performance in terms of
accuracy, suggesting that there may be little benefit to using such a detailed model,
at least for crystalline silicon technologies. Although the comparison revealed the
relatively good agreement and the lack of availability of K /S model coefficients
for many modules, the two models used different methods to determine radiation
and temperature. So, it is not obvious that the PV models agree to what extent.
Recent work at Sandia National Laboratories [37] used the I–V curve data that
are available from the IEC 61853 (IEC, 2011) to empirically determine the single-
diode model parameters. Although this technique is successful for many modules,
the implementation generates unlogic coefficients for some that need improvements.
Most importantly though, it is only calculating the single-diode parameters under
STC and uses published modelling relations [38] to translate the parameters to other
radiations and temperatures. These parameter translations should be further studied
and modified as necessary as more data for each PV module will become available
[30].

3 Maximum Power Point Tracking Techniques

Themaximum power point (MPP) and its corresponding voltage change based on the
change of the temperature or irradiation. Thus, it is compulsory to track the MPP of
the PV array to maximize the efficiency of PV system. All in all, the MPPT process
participates mainly in reducing the PV system cost and improving the overall effi-
ciency [39]. This part covers the fourmost common and efficient conventionalMPPT
techniques. In addition, some soft computing MPPT techniques will be covered in
brief as follows.

3.1 Conventional MPPT Techniques

Numerous conventional MPPT techniques have been used to track the unique MPP
under uniform condition (without PSC). The most famous conventional techniques
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are perturb and observe (P&O), incremental conductance (IncCond), hill climbing
(HC) and constant voltage (CV). The basic idea of operation, literature review, merits
and demerits in addition to comparisons of these conventional techniques have been
introduced in the following subsections.

3.1.1 Perturb-and-Observe Technique

Perturb-and-observe (P&O) technique uses the measured PV voltage, current, and
the output power and then takes the decision to increase or decrease the voltage using
the duty ratio of the DC–DC converter until the MPP is tracked. Figure 5 shows the
idea behind this technique on the P–V characteristic. Figure 6 shows the flowchart
of P&O technique. The logic of the P&O is to perturb the PV output voltage and
observe the power change. If the PV power captured increased, the perturbation
decision should be kept in the same direction regardless of whether the PV voltage
increases or decreases until MPP is tracked, whereas if the output power decreased,
the voltage increment (�V ) should be reversed. The maximum power is extracted
when dP/dV = 0 [26, 28–31].

Finally, the advantages and disadvantages of P&OMPPT technique are presented
in Table 1. The results in [40–45] revealed that P&O has less performance than
IncCond but outperformed the other conventional MPPT techniques. In addition,
some authors discovered that some improvements on P&O put it in the same rank
with IncCond [46–48].

Fig. 5 P–V characteristic of
the PV array explaining the
P&O concept

> <
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Fig. 6 Flowchart of P&O technique concepts

Table 1 Advantages and disadvantages of P&O MPPT technique

References Advantages Disadvantages

[41, 42, 44, 49] • Easy to implement
• Upright, accurate and good
performance under uniform
radiation

• Online and does not depend on PV
array

• Oscillations around steady state
occur during fast-varying
environmental conditions

• Difficulty of the step size control
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3.1.2 Incremental Conductance MPPT Technique

Incremental conductance (IncCond) MPPT technique is one of the most widely used
MPPT strategies which has the advantage of fast tracking of the MPP. Compared to
P&O MPPT strategy, IncCond combines and utilizes the unique characteristics of
both the output P–V curve and I–V curve of the PV array and thus tracks the MPP
faster andmore accurately. IncCondMPPT technique relies on the P–V characteristic
slope where the MPP is tracked when dP/dV = 0 as follows [39, 40]:

d(VPV , IPV )

dVPV
= IPV + VPV ∗ dIPV

dVPV
= 0 (4)

dIPV
dVPV

= − IPV
VPV

(5)

dVPV
∼= �VPV = VPV (t2) − VPV (t1) (6)

The current change dIPV and the voltage change dVPV are approximately equal
to �VPV �IPV as the following:

dVPV
∼= �VPV = VPV (t2) − VPV (t1) (7)

dIPV ∼= �IPV = IPV (t2) − IPV (t1) (8)

As shown in Fig. 7 [50], the MPP is tracked and caught when dIPV
dVPV

= − IPV
VPV

is

satisfied, and the MPP is achieved. If
(

dIPV
dVPV

> − IPV
VPV

)
, the operating point will be

left to the MPP on the P–V curve. If
(

dIPV
dVPV

< − IPV
VPV

)
, the operating point will be

right to the MPP as shown in Fig. 7.
Numerous comparative researches revealed that IncCond is the most efficient

conventional MPPT technique compared to other conventional techniques (P&O,
HC, CV, OV, SC, TP, PC, TPE, TS and Fixed duty cycle) in terms of steady-state

Fig. 7 P–V characteristic
explaining the IncCond
concept
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Table 2 Advantages and disadvantages of IncCond technique

References Advantages Disadvantages

[41, 44, 49, 51, 52] • Online, accurate, reliable and
efficient

• Variable step size makes it more
adequate to fast-varying
environmental conditions

• Oscillation around steady state is
less

• Response time is longer when
environmental conditions change

• Highly expensive
• Speed and accuracy depend on
step size, so oscillations might
happen

error, dynamic response and efficiency followed by P&O technique [41–43, 45]. The
finding agreed with the finding discovered by Gupta et al. [44] which revealed that
IncCond has superior performance as compared to P&O and CV in terms of tracking
efficiency, rise time, fall time and dynamic response [44]. In similar, Ishaque et al.
revealed that IncCond performance is slightly better than P&O and very sensitive to
its perturbation size, especially at low irradiance levels [40]. On the other hand, both
Faranda and Hohm discovered that P&O and IncCond have superior and similar per-
formance in addition to higher efficiency compared to other conventional techniques
[47, 48]. Advantages and disadvantages of IncCond MPPT technique are given in
Table 2.

Comparing to P&O MPPT strategy, IncCond MPPT strategy is more complex.
IncCond MPPT strategy could make a flexible decision of the next step size based
on current judge—a large step size promises fast responding speed, while small step
size satisfies accurate tracking result. For this reason, it usually leads to a higher cost.
The complexity of IncCond MPPT strategy is caused by the design of a reference
value ε which determines both the tracking speed and the accuracy of the tracking
result.

Usually, it would take a long time to select a suitable ε; for example, in
my research ε is between 0.00500000000000000400750099999999999999 and
0.005000000000000004007501. If ε equals the previous value, the step size is not
large enough to distinguish the tracking speed of IncCond MPPT strategy from the
one of P&OMPPT strategies. However, if ε equals the later value, the tracking result
turns to unstable and misses the goal in several seconds [39].

3.1.3 Hill-Climbing MPPT Technique

The hill-climbing (HC) technique is very easy in implementationwhere no priori data
are needed. It relies on the DC–DC converter duty cycle change in order to determine
the change of the power until the power change reaches zero (MPP). Rapid change of
solar irradiance may cause the HC algorithm to lose MPP fast tracking completely
due to lack of fast response. Also, oscillations around MPP during fast-varying
environmental conditions are happened [8, 53–56]. Advantages and disadvantages
of HC MPPT technique are given in Table 3.
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Table 3 Advantages and disadvantages of HC-based MPPT technique

References Advantages Disadvantages

[49, 51, 57, 58] • No priori data is needed
• Easy in idea and implementation

• Oscillations around steady state
occur during fast-varying
environmental conditions

• Suitable step size is important
• Less efficient under dynamic state

3.1.4 Constant-Voltage MPPT Technique

Constant-voltage (CV) technique forces the PV array’s voltage to a fixed value where
the MPP voltage (VMPP) is approximated to 76% of the PV array’s open-circuit
voltage (VOC) [43]. The shortcomings of this technique are that the VMPP is not
always at 76% of the VOC; therefore, it increases the steady-state error and reduces
the efficiency. The CV controller has some merits such as only one voltage sensor is
needed and the current sensor is not required [48]. Also, it is the easiest technique to
be implemented and has low installation cost, but its efficiency is poor with respect
to other active MPPT techniques. The block diagram of a CV controller is shown in
Fig. 8 where VPV is only measured in order to provide the duty cycle of the DC–DC
converter by PI regulator to track the MPP [44]. Advantages and disadvantages of
CV-based MPPT technique are introduced in Table 4.

DC–DC
converter

PI Controller
DVref

VPV

VPV

Fig. 8 Block diagram of CV controller

Table 4 Advantages and disadvantages of CV technique

References Advantages Disadvantages

[42, 44, 49, 58] • Easy to implement
• CV uses one voltage sensor;
hence, the cost will be reduced

• Economical and more efficient
during low radiation

• Priori data is needed
• Less accuracy and efficiency due
to approximation (VMPP =
0.76%VOC), which is not right in
some cases
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3.2 Soft Computing MPPT Techniques

3.2.1 Fuzzy Logic Control MPPT

Fuzzy logic is a form ofmany-valued logicwhich deals with reasoning that is approx-
imate rather than fixed and exact. In contrast with traditional logic which usually sets
two-value logic as true or false, fuzzy logic can have varying values. Fuzzy logic
variables may have a truth or false value that ranges in different degrees and be
expressed by linguistic variables. In these cases, fuzzy logic control could provide
both fast process speed and the needed accuracy to some extent [39, 59].

The objective of FLC is to track and extract the maximum power from the PV
system for a given irradiance (W/m2) and temperature (°C). It does not require any
technical knowledge of the PV system, while its simplicity gives it an advantage in
tracking its MPP under fast-varying atmospheric conditions [60, 61]. The FLC has

two inputs which are dPPV
dVPV

and�
(
dPPV
dVPV

)
, i.e., (Err) and (ΔErr) which are determined

from the PV output power and voltage (fuzzification) as follows:

Err = PPV (k) − PPV (k − 1)

VPV (k) − VPV (k − 1)
(9)

�Err = Err (k) − Err (k − 1) (10)

The output from FLC is the required change in the duty cycle of the DC–DC con-
verter (de-fuzzification). The FLC block diagram is shown in Fig. 9. The advantages
of using FLC are in it being a universal control algorithm, very simple, adaptive,
fast tracking response, parameter insensitivity and can work properly even with an
imprecise input data. Also, FLC has better and efficient response in tracking theMPP,
especially in the case of rapidly changing atmospheric conditions [62–65]. One of
its drawbacks occurs in PSC where it may stick around LP.

Figure 10 shows the input and output membership functions, and Table 5 intro-
duces the input and output fuzzy rules [8]. The variation step of Err and �Err may
vary according to the system. Once Err and ΔErr are calculated and transferred to
the logic variables based on the membership functions, the FLC output, which is
typically duty ratio change, ΔD of the DC–DC boost converter is estimated in rules
as given in Table 5.

To
Switch

gate

Fuzzy Logic 
ControllerCalculation of Err and ΔErr Subsystem

Err

ΔErr

Vpv

Ipv

V_PV

I_PV

ΔD  D

Fig. 9 FLC block diagram in MATLAB/Simulink
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-100 100

NB NM NS ZE PS PM PB

Input membership functions of Err and ΔErr respectively

Output membership functions

-50 50

NB NM NS ZE PS PM PB

Err, MFs

ΔErr, MFs

NB NM NS ZE PS PM PB

ΔD, MFs

Fig. 10 Membership functions of FLC

Table 5 Fuzzy rules for the
input and output variables

Err �Err

NB NM NS ZE PS PM PB

NB NB NB NB NB NM NS ZE

NM NB NB NB NM NS ZE PS

NS NB NB NM NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM NS ZE PS PM PB PB

PM NS ZE PS PM PB PB PB

PB ZE PS PM PB PB PB PB

Based on recent comparative studies of FLC-based MPPT given in Table 6, it
is concluded that FLC has faster convergence speed in tracking the unique peak
under uniform conditions compared to the conventional techniques [8, 66, 67]. Also,
adaptive FLC performs well compared to the direct and indirect FLC-based MPPT
during dynamic and steady-state conditions regardless of the converter type [51, 68,
69]. In conclusion, FLC should be combined with a scanning and storing algorithm
or other AI techniques to track the GP under PSC to achieve fast and accurate
convergence, high tracking efficiency and drift avoidance [70]. The advantages and
disadvantages of FLC-based MPPT are given in Table 7.
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Table 6 Recent comparative studies of FLC with other MPPT techniques

References Variable
control

DC–DC
converter

Findings

[8] Duty cycle Boost FLC has better performance in terms of tracking
speed and drift avoidance followed by P&O, INC
and HC MPPT techniques in both dynamic
response and steady state

[71] Duty cycle Boost FLC-based auto-scaling variable step size is
proposed to achieve the merits of fast tracking and
convergence speed during transient and steady
state (no oscillations) compared to fixed step
IncCond in both simulation and experimental
works

[70] Duty cycle Boost The proposed FLC with a scanning and storing
algorithm has better performance compared to
variable-step-size IncCond, conventional PSO and
FLC-based HC in both simulation and
experimental works. Many merits are achieved
such as fast and accurate convergence to the GP,
high tracking efficiency and no oscillations during
transient and steady-state conditions

[51, 68] Duty cycle Boost–SEPIC Adaptive FLC performs well compared to the
direct and indirect FLC-based MPPT in terms of
the active power and current oscillations, rising
time, settling time and over/undershoots during
dynamic and steady-state conditions. The
antecedent and consequent membership functions
of the proposed adaptive FLC are tuned
synchronously

[69] Duty cycle Boost Adaptive gain FLC outperforms the conventional
FLC where it integrates two different rules. The
first rule is used to adjust the duty cycle of the
boost converter, while the second one is used for
online adjusting of the controller’s gain

[66] Duty cycle Buck FLC has good performance compared to P&O
during dynamic and steady-state conditions in
terms of tracking efficiency and response time

[72] Duty cycle Buck–boost The three best MPPT techniques are FLC, GA and
PSO in terms of the performance (tracking speed,
the average tracking error, the variance and the
efficiency) and the implementation cost (sensors
type, circuit type and software complexity). PID
and ANN show less performance

[67] Duty cycle SEPIC FLC-based MPPT performs better than P&O in
terms of accuracy, tracking speed and convergence
speed during dynamic and steady-state conditions
in both simulation and experimental works
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Table 7 Advantages and disadvantages of FLC-based MPPT technique

References Advantages Disadvantages

[49, 73–78] • Highly robust, fast response, better
performance and adjustable accuracy

• Less oscillation during conditions
variation

• Able to work with imprecise inputs
and good efficiency

• More effective when combined with
other EA techniques

• Does not require accurate
mathematical model and detailed
information of the system

• High complexity and expensive
• Offline (priori information is
required)

• Efficiency of the whole system is
dependent on the designer’s
performance and precision of the
rules

• Fails to converge under dynamic
states

• Rules cannot be changed, once
defined

3.2.2 Artificial Neural Network Technique

Artificial neural network (ANN) represents one of the artificial intelligent MPPT
techniques that has the ability to solve nonlinear problems. Therefore, it can be
applied to track the GP over the LPs. ANN consists of three layers: input, hidden
and output layers. The input layer is defined from the PV array such as temperature,
irradiance and Isc or V oc [64, 79, 80]. ANN adjusts and controls the duty cycle of
the DC–DC converter (ANN output) to track the GP.

Based on recent comparative studies of ANN-based MPPT given in Table 8, it
can be observed that ANN is efficient and accurate in tracking the unique peak
under uniform conditions compared to conventional techniques and mitigates their
shortcomings related to tracking speed and oscillations around MPP at steady state
[80–83]. On the other hand, ANN is more preferable if combined with other con-
ventional or AI MPPT techniques to extract the GP instead of LP from the PV array,
where ANN is used to predict the GP region whereas conventional or AI technique
is used to track the GP. The reasons behind these are irradiance sensors are relatively
expensive or may not be available, in addition to sufficient training it needs a huge
number of data points that increases network complexity, and it is time consuming
especially for partial shading condition (PSC). Also, enlarged optimization scope for
the size and hidden number of layers and retraining due to system ageing is required
as a result of PV characteristics change. For example, Punitha et al. combined ANN
with IncCond to track the GP efficiently compared to P&O and FLC-based HC [84],
while Jiang et al. combined ANN with P&O where ANN is used to predict GP
searching area and P&O to track the GP. The findings revealed that the proposed
hybrid MPPT can track the GP more efficiently and accurately compared to P&O,
Fibonacci search, conventional PSO and DE [85]. Also, Loubna et al. proved that
ANN with a scanning and storing algorithm has better performance than variable
P&O with global scanning and IncCond based on FLC [86]. Finally, Karatepe et al.
proposed ANN-integrated FLC with polar information controller to track the unique
peak under uniform condition and the GP under PSCs. The ANN is trained once
for several PSCs to determine the global voltage (VGP). The FLC uses VGP as a
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Table 8 Recent comparative studies of ANN with other MPPT techniques

References Variable
control

DC–DC
converter

Findings

[81] Duty cycle Flyback
converter

Simulation and experimental findings
reveal that variable-step-size ANN
performed well in terms of tracking
accuracy, response time, overshoot and
ripple compared to the fixed-step-size
ANN that has the same disadvantages of
P&O technique related to tracking speed
and oscillations around steady state

[88] Duty cycle Boost ANN is used directly to track the GP,
while the P&O technique is used only to
refine the result. The prediction accuracy
depends on the preselected number of
power measurements, the ANN size and
prior information

[86] Duty cycle Boost ANN with a scanning and storing
algorithm has good performance in terms
of tracking speed, response time and
efficiency compared to variable P&O
with global scanning and IncCond based
on FLC

[85] Duty cycle Buck–boost Two implementations of ANN are
combined with P&O where ANN is used
to predict the GP search area and P&O is
used to track the GP. The proposed
hybrid MPPT can track the GP
efficiently and accurately in terms of
tracking speed and convergence speed
compared to P&O, Fibonacci search,
conventional PSO and DE

[84] VMPP Buck The proposed ANN combined with
IncCond can track the GP efficiently
compared to P&O and FLC-based HC in
terms of tracking speed and convergence
speed. An ANN is used to provide V ref to
the modified IncCond

[87] Duty cycle Boost ANN is combined with FLC where the
former is used to track the GP under
several PSCs with SP, BL and TCT
configurations

reference voltage to adjust the duty cycle of the boost converter [87]. The advantages
and disadvantages of ANN-based MPPT are listed in Table 9.
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Table 9 Advantages and disadvantages of ANN-based MPPT technique

References Advantages Disadvantages

[49, 51, 76–78, 89] • Fast tracking speed, acceptable
accurateness

• Effective, less oscillations in
conditions variation and good
efficiency

• Can be trained offline and used
in the online environment

• High complexity and expensive
• Requires extensive information
about the PV parameters

• Additional cost of temperature
and irradiance sensors

3.2.3 Adaptive Neuro-Fuzzy Inference System Technique

Adaptive neuro-fuzzy inference system (ANFIS) is one of themost efficientAI-based
MPPT that uses ANN for internal data training and FLC for external data. Hence, it
has the advantages of both techniques. The inputs of ANN are error (Err) and error
change (�Err), and the ANN output will be the input to FLC. The FLC provides the
optimal duty cycle of the DC–DC converter to track the GP [90]. It is difficult to
obtain the membership functions and fuzzy rules using trial and error, so the ANN
part in ANFIS reduces the error and optimizes the parameters, whereas FLC has
the ability to work with imprecise inputs and good efficiency in addition to accurate
mathematical model and detailed information of the system are not required [44, 91].

Based on recent comparative studies of ANFIS-based MPPT given in Table 10,
it can be observed that ANFIS can extract the maximum power efficiently and accu-
rately regardless of whether PSC occurs or not. Radianto et al. proved that ANFIS
can extract the GP of the TCT configuration through adjusting the duty cycle of the
boost converter [92]. This is supported by Faiza et al. which revealed that ANFIS can
track the GP efficiently and accurately under various configurations such as HC, BL,
TCT and SP. In addition, the highest maximum power has been achieved with TCT
configuration [91]. The advantages and disadvantages of ANFIS MPPT technique
are given in Table 11.

3.2.4 Differential Evolution and Genetic Algorithm

Differential evolution (DE) is one of the most powerful stochastic, optimization-
based evolutionary algorithms (EA) which is similar to GA. However, unlike GA
which relies on crossover, DE on the other hand relies onmutation (difference vector)
to convert the operating point towards the best solution in a search area [95]. It also
depends on the generation of initial random population similar to the other EAwhere
it refines and improves the further candidate solutions using selection, mutation and
crossover. On the other hand, GA depends on the survival of the fittest through the
first generation of initial random population. Then, an objective function is defined
to determine the fitness of each solution, followed by evaluating the fitness of each
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Table 10 Recent comparative studies of ANFIS with other MPPT techniques

References Variable
control

DC–DC
converter

Findings

[44] Duty cycle Boost Firstly, ANFIS has better tracking
efficiency than FLC and ANN
techniques. Secondly, IncCond has
superior performance compared to P&O
and CV in terms of tracking efficiency,
rise time, fall time and dynamic
response. Finally, Neural FL has better
efficiency than other conventional and
hybrid MPPT techniques

[93] Duty cycle Buck Design and implementation of the
proposed ANFIS, CV and IncCond using
Altera EP4CE6E22C8N FPGA card. The
findings reveal that ANFIS is more
efficient and has better dynamic response
followed by IncCond and finally CV

[91] Duty cycle Boost ANFIS can track the GP efficiently and
accurately under various PSCs and
different configurations such as HC, BL,
TCT and SP. TCT has the best
performance with the highest maximum
power

[94] Duty cycle Boost ANFIS can track the unique MPP
quickly and efficiently under dynamic
and steady-state conditions

[92] Duty cycle Boost ANFIS is used to extract the GP of the
TCT configuration through adjusting the
duty cycle of the boost converter

Table 11 Advantages and disadvantages of ANFIS-based MPPT techniques

References Advantages Disadvantages

[44, 91] • Higher efficiency under PSCs, faster
tracking speed and robustness

• Collective advantages of both FL
and ANN

• Simple and does not require too
much computing or mathematical
equations

• The ANN part in ANFIS reduces the
error and optimizes the parameters

• High complexity and expensive
• Difficult to obtain membership
functions and rules

• More sensors are required
• Insufficient training on the PV array
leads to less accuracy
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Table 12 Recent comparative studies of DE and GA with other MPPT techniques

References Variable
control

DC–DC
converter

Application Findings

[96] Duty cycle Buck–boost Stand-alone PV Modified DE outperforms classic
PSO in tracking the GP under
PSC in terms of accuracy,
tracking speed, convergence
speed and efficiency. Classic PSO
may trap at LP for some PSCs

[97] Duty cycle Buck–boost Grid-connected DE is proposed to study its
effectiveness in handling PSCs
(variable GP). It outperforms the
HC in terms of convergence
speed, tracking speed and
accuracy. Also, no oscillation
around MPP occurs during
dynamic and steady states

[98] Duty cycle Boost Stand-alone PV Jaya DE can track the GP
accurately and quickly where it
outperforms the state-of-the-art
improved P&O with ACO
(ACOPO), PSO and FPA
techniques in terms of tracking
speed, convergence speed and
accuracy under dynamic and
steady states

[72] Duty cycle Buck–boost Stand-alone GA and PSO outperform PID,
FLC and ANN, in terms of
performance and implementation
cost (sensors type, circuit type
and software complexity). Both
GA and PSO provide a good GP
tracking and show very good
performance, but design and
hardware implementation of GA
is more difficult and complex
than PSO

[99] Duty cycle Boost Stand-alone PV GA succeeds in tracking the GP
under PSCs compared to P&O
and IncCond which fail to detect
GP and track the first MPP
whether it is GP or LP

[100] Duty cycle Boost Stand-alone PV Both GA and the binary search
method can track the GP in all
PSCs efficiently and accurately
with error percentage less than
2%

(continued)
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Table 12 (continued)

References Variable
control

DC–DC
converter

Application Findings

[101] Duty cycle Buck Grid-connected GA is integrated with P&O. The
GA parameters (population size
and number of iterations) are
decreased, thus catching the GP
in a shorter time

[102] Duty cycle Boost Stand-alone PV GA combined with FLC
improves the performance and
efficiency of FLC where GA can
optimize the FLC membership
functions and rules. It has better
performance in terms of tracking
speed, response time, efficiency
and robustness

individual and finally creating a new population using genetic operators (selection,
crossover and mutation) [72].

Based on recent comparative studies of DE and GA with other MPPT techniques
introduced in Table 12, although DE already has acceptable performance to track
GP under PSCs, further modifications and improvements on DE have been done by
Ramli et al. [96] which shows that DE is more efficient in tracking the GP under PSC
compared to classic PSO in terms of accuracy, tracking speed, convergence speed and
efficiency where classic PSO may trap at LP for some PSCs. The proposed MPPT
technique given in [96] has threemainmerits that are (1) no randomnumbers are used,
(2) only one tuning parameter is required (mutation factor) and (3) implementation
simplicity [96]. In addition, a modified DE proposed by Tajuddin et al. outperformed
the HC when tracking the GP in terms of convergence speed, tracking speed and
accuracy. In addition, oscillation around MPP did not occur during dynamic and
steady-state conditions [97]. Finally, Kumar et al. proposed that Jaya DE that can
track the GP more accurately and quickly compared to the state-of-the-art improved
P&O with ACO (ACOPO), PSO and FPA techniques in terms of tracking speed,
convergence speed and accuracy under dynamic and steady-state conditions [98].

On the other hand, GA also has the ability to track the GP under PSC where the
comparative study achieved by Yousra et al. revealed that GA can track the GP under
PSC compared to conventional techniques (P&O and IncCond) which fail to detect
GP and track the first MPP notwithstanding whether it is GP or LP [99]. In addition,
Ramaprabha et al. proved that both GA and the binary search method can track the
GP for all PSCs efficiently and accurately [100]. Also, a comparative study done by
Kermadi et al. revealed that both GA and PSO track the GP with good performance
and less implementation cost, whereas design and implementation of GA is more
difficult and complex than PSO [72]. On the other hand, many researchers proposed
that GA should be combined and optimized with other MPPT techniques because
GAmay fall in one of the LPs in some cases of PSCs. For example, GA is optimized
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Table 13 Advantages and disadvantages of DE- and GA-based MPPT techniques

References Tech. Advantages Disadvantages

[76, 96] DE • Simple and straightforward
• Rapid convergence
• Capable of tracking the GP
regardless of the initial
parameter values

• Few control parameters
required

• Slow convergence to the GP
• Limited local search ability

[49, 51, 77,
103]

GA • High speed, accuracy and
good efficiency

• Possible wide search
• Applicable to fast change in
atmospheric conditions

• High complexity and
expensive

• Much computation process
• High memory needed
• More time consumed

and combined with P&O to improve the performance and efficiency of the former in
handling and catching the GP under PSC, where GA parameters are decreased and
the GP tracked in a shorter time [101]. Also, GA combined with FLC can improve
the performance and efficiency of FLC where GA can obtain the best subsets of the
membership functions. Optimized FLC has better performance in terms of tracking
speed, response time and efficiency in addition to robustness than FLC alone [102].
Finally, the advantages and disadvantages of DE- and GA-based MPPT techniques
are given in Table 13.

4 Grid-Connected PV Energy System (Case Study)

Photovoltaic (PV) or solar cell systems were initially fabricated for use in the 1950s
and were used primarily to power satellites in space from solar power. In the 1970s,
PV systems began to be used for terrestrial applications to provide power for remote
and grid-connected applications. Today, the use of grid-connected PV systems is
becoming increasingly popular, particularly as the USA and countries around the
world push for higher utilization of renewable energy sources. However, the grid
can become more unpredictable as the penetration of variable power sources, like
solar, increases. In order to overcome potential instability issues, recent research has
begun to focus on making the grid a more intelligent system, where power sources
and loads can communicate and adaptively react to needs of the surrounding system.
One important aspect of enabling a more intelligent grid is the ability for renewable
energy sources to monitor their own condition so that they can provide diagnostic
information to the rest of the grid [104].

The PV energy system is interconnected to the utility grid through DC–DC boost
converter and PWM converter as shown in Fig. 11. The boost converter is used to
track the MPP available from PV system, and the PWM converter is used to convert
DC voltage to AC voltage to be connected with electric utility. The control system
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Fig. 11 PV energy system interconnected to the utility grid

has two controllers: the first one is used for PV MPPT through controlling the duty
ratio of the boost converter using FLC and P&O techniques for comparison validity.
On the other hand, the other one (grid-side controller) is used to control active and
reactive power output from the system through controlling d-axis and q-axis current
components, respectively. For the purpose of achieving the accurate comparisons
and the performance assessment purposes of MPPT techniques, the same PV energy
system and same environmental conditions are used for the two MPPT techniques.
The main objective of this work is to introduce the FLC as MPPT for utility-grid-
integrated PV energy systems and compare its performance with P&O technique in
same operating conditions.

The whole PV energy system is simulated in Simulink. The simulation model
consists of PV array with a peak power of 100 kW connected through boost converter
to a three-phase inverter that is connected to an ideal 380-V utility grid through a
filter, as shown in Fig. 11. The PV array consists of strings of PVmodules connected
in parallel, NP. Each string consists of modules connected in series, NS . The PV
array consists of 66 parallel strings and 5 series-connected modules per string. The
inputs to the PV array are sun irradiance (W/m2) and cell temperature (°C). The
main characteristic of the module used (SunPower SPR-305E-WHT-D) is given in
Table 14, and the P–V characteristics of the PV array are shown in Fig. 12. The
maximum power is extracted using two efficient techniques which are P&O and
FLC. The explanation of the operation idea and how each technique modelled in
Simulink are introduced in the previous sections.

The boost converter (shown in Fig. 11) is controlled to track the MPP by control-
ling the output voltage of PV array, Vd,in by varying the duty ratio D in response to
variations in Vd,in. The relation between the boost converter input and output voltage
is shown as follows [10, 105]:
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Table 14 Characteristics of
SunPower
SPR-305E-WHT-DPV
module

Maximum power (Pmax) 305.2 W

Cells per module 96

Open-circuit voltage (VOC) 64.2 V

Short-circuit current (Isc) 5.96 A

Voltage at maximum power point (VMPP) 54.7 V

Current at maximum power point (IMPP) 5.58 A

Voltage (V)
0 50 100 150 200 250 300 350

Po
w

er
 (W

)

10
4

0

5

10 0oC
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50 oC

Voltage (V)

Fig. 12 P–V characteristics of PV array under study

Vd,out

Vd,in
= 1

(1 − D)
(11)

where Vd,out is the output DC voltage and D is the duty ratio of boost converter. The
previous equation shows that the duty ratio D is inversely proportional to Vd,in at
constant Vd,out and directly proportional Vd,out at constant Vd,in.

The three-phase PWM converter circuit consists of three legs, one for each phase,
as shown in Fig. 11. The objective of the three-phase PWM converter is to shape and
control the three-phase output voltages in magnitude and frequency (Fixed Voltage
Fixed Frequency, FVFF) with an essentially constant input voltage for utility-grid-
connected availability. Also, PWM inverter is used to help MPPT technique by
ensuring the DC voltage will remain constant in all operating conditions. The modu-
lation indexma of the three-phase PWM converter is obtained as follows [106, 107]:

ma = V
∧

control

V
∧

tri

= V
∧

LLC

Vd,out
(12)

where V
∧

control is peak value of the control signal andV
∧

tri is peak value of the triangular
signal.
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Fig. 13 Control scheme of the three-phase grid-side converter

4.1 Active and Reactive Output Power Control

The control of the grid-side inverter contains two control loops for controlling the
active and reactive output power. The two control loops are the inner and outer
control loops. The dc-link voltage is controlled to become constant using the outer
loop. The reactive power is controlled by setting the q-axis current reference to zero
value for unity power factor using the inner loop. As shown in Fig. 13, there are two
current controllers for direct, Id , and quadrature, Iq, components of inverter output
current. Also, phase-locked loop (PLL) as grid synchronization technique is used to
synchronize the control system with the phase angle of the grid utility.

The active and reactive power, Ps and Qs, respectively, can be defined as follows
[3, 108–110]:

Ps = 3

2
vd id (13)

Qs = 3

2
vd iq (14)

So, active and reactive power control is achieved through controlling the q-axis
and d-axis grid current components, respectively.
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Fig. 14 Sun irradiance and cell temperature change

4.2 Simulation Results and Discussions

The whole PV energy system shown previously in Fig. 11 is simulated using
Simulink. It consists of a 100-kW solar PV array, a DC–DCboost converter operating
at switching frequency of 20 kHz, an input inductance of 5 mH, output capacitor of
24 mF and three-phase voltage source PWM converter connected to 380-V utility
grid. Figure 14 shows the solar irradiance and cell temperature used in simulation as
inputs to the PV array. Themaximumpower, solar irradiance and cell temperature are
taken from the characteristics of the installed PV array provided by the manufacturer
(SunPower SPR-305E-WHT-D).

The whole PV energy system control in Simulink includes the MPPT controller
and the grid-side controller. The PV is directly controlled by the P&O or FLC to
track the maximum power available by controlling duty ratio of the DC–DC boost
converter. Figure 15 shows the output power available and the PV voltage for both
the two proposed efficient P&O and FLC techniques. At certain irradiance and tem-
perature, the PV output power and voltage are estimated and these values agree with
the P–V curve shown previously in Fig. 12. Also, it introduces the controlled duty
ratio of the DC–DC boost converter provided by the two efficient techniques to track
the MPP. The P&O and FLC are used to control the duty ratio which tracks the
maximum power point at variable irradiance and temperature. It is clear from Fig. 15
that the FLC has better performance, accuracy and flexibility compared to P&O
in both dynamic and steady-state response. Also, the FLC has better performance
for the maximum power compared to P&O based on efficiency and tracking speed.
Also, it can be observed that oscillation around maximum power is limited with FLC
compared to other state-of-the-art technique.
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Fig. 15 PV array: a output power, b output voltage and c duty ratio

It can be noticed from Fig. 16 that the grid-side controller is responsible for
maintaining the dc-link voltage constant at 500 V. The dc-link voltage is controlled
by exporting active power to the grid as shown in Fig. 16c. The reactive power of
the grid has been controlled to be zero as shown in Fig. 16d. The results obtained
from Fig. 16 show that the control system especially FLC is working effectively
and quickly in tracking the maximum power and the grid-side controller accurately
controls the active and reactive power through the id and iq, respectively.

The output power is regulated in order to keep dc-link voltage constant approxi-
mately. By applying the inverse Park transformation to d–q voltage vector compo-
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Fig. 16 Different simulation waveforms: a ma, b dc-link voltage using P&O and FLC, c active
power (kw) and d reactive power (kVar)

nents, the desired U ∗
abc voltage references are obtained. These are passed to a PWM

generator for generating the pulses to drive the inverter switches. The output voltage
of the inverter and grid is shown in Fig. 17.
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5 Conclusions

This chapter discusses the PV characteristics, performance, modelling and grid inter-
connection. It covers four different PVgeneratormodelswith their characteristics and
performance analysis. Also, the four most famous conventional MPPT techniques
with some of the soft computing MPPT techniques are discussed including detailed
comparisons and discussion with the limitations, merits and demerits of these MPPT
techniques. A grid-connected PV energy system is proposed in this chapter as a case
study where the whole system is simulated in Simulink. The PV array is connected
to the grid through the DC–DC boost converter and three-phase converter. The max-
imum power extracted from the PV is achieved using FLC technique and compared
to P&O technique. The FLC is more efficient and quick in response for the MPPT
than P&O. Also, the oscillation around maximum power is limited with FLC. On the
other hand, the main function of the grid-side controller is to separately control the
active and reactive power via two control loops which are the inner current control
loop and the outer dc-link voltage control loop. The outer dc-link voltage control
loop maintains a constant voltage on the dc-link capacitor for active power control,
while the inner control loop is used to control the reactive power by setting the q-
axis current reference to zero value for unity power factor. The simulation results
prove the superiority of FLC compared to the other state-of-the-art technique. Also,
the simulation results prove the robust control of dc-link voltage, active power and
reactive power transmitted to the utility grid.
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Power Electronics for Practical
Implementation of PV MPPT

Mohamed Abouelela

Abstract Using MPPT with solar panel (PV) installations has clear advantages.
Several techniques are available for building PV MPPT using analog or digital and
microcontroller-based control algorithms. MPPT algorithms are simple enough, but
implementing a working MPPT controller is not a simple task, because it is required
to know the particularities of the underlying switching converter. Many of the so-
called scientific papers published on this topic simply use computer simulations
instead of real hardware, and the readers find themselves lacking vital information.
In this chapter, we will consider the following topics in detail:

1. The basic theory of operation of the switched-mode power supply.
2. DC/DC converters and how it can be used for maximum power tracking.
3. The concept of MPPT for PV arrays.
4. Power electronics and fundamentals of power switches.
5. Practical implementation of power modules used in DC/DC converters.
6. Driver circuits.
7. Software and control algorithms needed for DC/DC converters.
8. Practical DC/DC converters for MPPT of PV systems.
9. Design procedure of PV MPPT for different types of loads.
10. Battery charger circuits with MPPT.
11. Grid-connected inverters with MPPT for PV systems.

Although the above topics will be covered theoretically and analytically, more atten-
tion to practical implementation will be considered. By the end of this chapter, the
reader will be able to design, implement and test an MPPT circuit for a given load
profile.
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1 Introduction: Switched-Mode Power Supply (SMPS)

A switched-mode power supply is an electronic circuit that regulates the output from
a given unregulated DC source. The main advantages of SMPS over the traditional
linear regulator are its high efficiency and its high-power capabilities. The main
concept depends on using switching element (power transistor) while controlling the
on/off ratio (duty cycle) of this switch. Figure 1 demonstrates the basic idea of an
SMPS. Define the duty cycle D as: D = ton/T s, and hence,

VO = DVd. (1)

Fig. 1 Basic circuit for SMPS
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where V d is the input voltage available from a given DC source like batteries or
rectifier circuit. Since the relation in Eq. (1) is linear, the output can be changed
linearly by controlling the duty cycle D. A smoothing circuit (low-pass filter) may
be added at the output to obtain DC waveform instead of the rectangular waveform
shown in Fig. 1b. Typical applications of SMPS are in DC/DC converters and MPPT
for PV systems.

1.1 Switched-Mode Power Supply Modeling and Topologies

Different SMPS topologies or techniques are available in the literatures and pub-
lications. Each topology aims at achieving certain performance objectives while
considering:

– The series switch, on/off resistance.
– The low-pass filter components used to smooth the DC output voltage.
– The losses in switches at high frequencies, a high switching frequency results
in smaller sizes for inductors and capacitors. On the other hand, high-frequency
switching may add power losses and electrical noise inside the SMPS circuit.

1.2 Selection of SMPS Topologies

There are several topologies commonly used to implement SMPS. Each topology
has its own unique features, which makes it best suited for a certain application. To
select the best topology for a given specification, it is essential to know the basic
operation, advantages, drawbacks, complexity and the area of usage of a particular
topology. The following factors help while selecting an appropriate topology:

(a) Is the output voltage higher or lower than the whole range of the input voltage?
(b) How many outputs are required?
(c) Is input to output dielectric isolation required?
(d) Is the input–output voltage very high?
(e) Is the input–output current very high?
(f) What is the maximum voltage applied across the transformer primary and what

is the maximum duty cycle?

Factor (a) determines whether the power supply topology should be a buck or
buck–boost type. Factors (b) and (c) determine whether or not the power supply
topology should have a transformer. Reliability of the power supply depends on the
selection of a proper topology on the basis of factors (d), (e) and (f).
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2 Buck Converter

The buck converter topology produces output voltage less than the input voltage
(VOUT < V IN). The basic circuit and its switching waveforms are shown in Fig. 2.
A power switch Q1 (MOSFET) is used. The output is obtained through the switch
and a low-pass filter, built using a simple inductor and a capacitor. In a steady state,
with the switch ON, the input provides energy to the output and to the inductor (L).
During the time interval TOFF, the switch is OFF, and the inductor current continues
to flow in the same direction, as the stored energy within the inductor continues to
supply the load current. The diode D1 completes the inductor current path, while Q1

is OFF; thus, it is called a freewheeling diode. The DC load voltage V out as shown
in Fig. 2c can be found simply from the relation:

Fig. 2 Buck converter circuit and waveforms [1]
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V out = DVIN (2)

Since D < 1, then V out is always less than V IN.
The corresponding input and inductor current are given in Fig. 2d and e, respec-

tively. If the desired ratio VOUT/V IN is less than 0.1, it is strongly recommended
to use a two-stage buck converter, to avoid power losses in the power switch when
operated with narrow switching on period. The resultant reduction ratio in this case
will be equal to the multiplication of the two cascaded converter reduction ratios as
given by the equation:

Dtotal = D1.D2 (3)

Although the buck converter can be either continuous or discontinuous, its input
current is always discontinuous, as shown in Fig. 2d. This results in a larger elec-
tromagnetic interference (EMI) filter than the other topologies. The design of the
filter components will highly affect the ripple factor of the output DC voltage. For
higher load current, the synchronous buck converter is used where a MOSFET with
a very low ON-state resistance RDSON is used instead of the freewheel diode, to avoid
the excessive power loss inside this diode (D1). This MOSFET is turned on and
off synchronously with the buck MOSFET. Therefore, this topology is known as a
synchronous buck converter. The drive signal for this MOSFET is the complement
of the main switching signal used for buck switch. Because a MOSFET can conduct
in either direction, we should turn off the MOSFET immediately if the current in the
inductor reaches zero; otherwise, the direction of the inductor current will reverse
(after reaching zero) because of the output LC resonance. In such a scenario, the
synchronous MOSFET acts as a load to the output capacitor and dissipates energy in
the RDSON of the MOSFET, resulting in an increase in power loss during discontin-
uous mode of operation, and the output voltage may fall below the regulation limit.
To deliver higher load current at a low output voltage, the multiphase synchronous
buck converter may be used. In this topology as shown in Fig. 3, more than one con-
verter is connected in parallel to deliver current to the load. To optimize the input and
output capacitors, all the parallel converters operate on the same time base and each
converter starts switching after a fixed time/phase from the previous one. The design
of input and output capacitors is based on the switching frequency of each converter
multiplied by the number of parallel converters. As shown in Fig. 4e, the input current
drawn by a multiphase synchronous buck converter is continuous with less ripple
current as compared to a single converter shown in Fig. 3d. Therefore, a smaller
input capacitor meets the design requirement in case of a multiphase synchronous
buck converter.
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Fig. 3 Multiphase synchronous buck converter [1]

3 The Boost Converter

A boost converter is a DC/DC converter that can produce VOUT greater than V IN. The
basic circuit used for a boost converter and its waveforms are given in Fig. 4. In the
boost converter, an inductor (L) is used to store energy from the input sourcewhen the
MOSFET (Q1) is ON.WithQ1 closed for a period of TON, the input voltage energizes
the inductor (L); therefore, the inductor current rises linearly from its present value
IL1 to IL2, as given in Fig. 4d, and the output load current IOUT is provided from the
discharge of the output capacitor CO. The value of CO must be as high as needed to
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Fig. 4 Boost converter [1]

supply the load current during the ON period TON while keeping the output voltage
as constant as possible (with minimum ripple factor) [2].

During the OFF period TOFF, the inductor delivers the stored energy to the load,
and the load voltage in this case will be equal toV IN plusVL. The diodeD1 completes
the inductor current path through the output capacitor during the Q1 OFF period
(TOFF).

VOUT = VIN + VL OFF period, VL is the inductor voltage
VOUT = VC ONperiod, VC is the capacitor voltage.

By controlling the ON/OFF ratio (duty cycle), we can obtain VOUT > V IN, which
is given by:

VOUT = VIN/(1 − D) (4)
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Since the inductor current is continuous as shown in Fig. 4d, and never becomes
zero during one whole cycle (TS); therefore, this boost converter is working in con-
tinuous conduction mode. The diodeD1 ensures the load current flowing in the same
direction all the time.

The root-mean-square (RMS) ripple current in the output capacitor is given by
Eq. 5 calculated using the waveform given by Fig. 4d.

IRIPPLERMS = (ID1)
2−(IOUT)

2 (5)

where

ID1RMS RMS value of ID1
IRIPPLERMS Ripple RMS current of capacitor
IOUT Output DC

A plot for the ratio VOUT/V IN as a function of the duty cycle is shown in Fig. 5
based on Eq. 5 (ideal curve). A practical curve that includes the non-ideal behavior
of the circuit component is also shown. Working atD higher than 0.75 is impractical
because of the losses in the inductor, capacitor and the semiconductor switch, while
working at OFF periods.

If both buck and boost are combined together, buck–boost converter is obtained.
In a buck–boost converter, the output voltage can be both higher and lower than
the input voltage. The simplified schematic of a buck–boost converter is depicted in
Fig. 6, while the input–output relation is given by:

VOUT = DVIN/(1 − D) (6)

Note that for VOUT < VIN D < 0 while for VOUT > VIN D > 0.5.

Fig. 5 Dependence of
VOUT/V IN on D
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Fig. 6 Buck–boost
converter

4 Forward Converter

This topology uses a transformer to isolate the load from the input source. It is based
on the basic buck converter topology and adds more flexibility for the controlling
output voltage to input voltage ratio. The basic circuit and switching waveforms are
given in Fig. 7, where a switch (Q1) is connected in series with the transformer (T 1)
primary. The transformer is used to step down the primary voltage and provides
isolation between the input voltage source V IN and the output voltage VOUT. In the
steady state of operation, when the switch is ON for a period of TON, the dot end of
the winding becomes positive with respect to the non-dot end. Therefore, the diode
D1 becomes forward-biased and the diodes D2 and D3 become reverse-biased.

Equation 7 gives the output voltage as a function of input voltage, transformer
ratio and the duty cycle.

VOUT = VIN · (NS/NP).D (7)

When Q1 is OFF, there the stored energy in the magnetic core has to dissipate.
One such method is shown in Fig. 7. The NR winding is used for this purpose where
the flux stored inside the magnetic core induces a negative voltage at the dot end
of the NR winding, which forward-biases the diode D3 and resets the magnetizing
energy stored in the core. Resetting the magnetizing current during the OFF period
is important to avoid saturation. The diode D2 completes the inductor current path
during the Q1 OFF period (TOFF). To reduce losses in output diode rectifiers (D1, D2

in Fig. 7), a synchronous MOSFET can be used instead of diodes. The MOSFETs
Q1 and Q2 are complementary and self-driven from the transformer secondary, as
shown in Fig. 8. Improving the load transient response and implementing current
mode control require reducing the output inductor value and the use of a better
output capacitor to meet the output voltage ripple requirement, as discussed in the
“buck converter.” Multiple output, forward converter coupled inductor can be also
used to get better cross-load regulation requirements as explained for buck converter
in Fig. 3.



74 M. Abouelela

Fig. 7 Forward converter [1]
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Fig. 8 Synchronous buck
converter [3]

5 Flyback Converter (FBT)

The basic circuit and switching waveforms for flyback converter (FBT) are shown
in Fig. 9. The difference between the flyback and forward converters is:

– The secondary output is out of phase for flyback.
– No need to reset winding NR.
– A snubber circuit (RS and CS in Fig. 9) is used for the reset function.
– There is no inductor to store energy in the output circuit as the transformer sec-
ondary does the same function.

As the diodeD1 becomes reverse-biased, the load current (IOUT) is supplied from
the output capacitor (CO). The output capacitor value should be large enough to sup-
ply the load current for the time period TON, with the maximum specified droop in
the output voltage. At the end of the TON period, when the switch is turned OFF, the
transformer magnetizing current continues to flow in the same direction. The mag-
netizing current induces a negative voltage in the dot end of the transformer winding
with respect to non-dot end. The diode D1 becomes forward-biased and clamps the
transformer secondary voltage equal to the output voltage. The energy stored in the
primary of the flyback transformer transfers to secondary through the flyback action.
This stored energy provides energy to the load and charges the output capacitor.
Since the magnetizing current in the transformer cannot change instantaneously at
the instant, the switch is turned OFF, the primary current transfers to the secondary,
the amplitude of the secondary current will be the product of the primary current,
and the transformer turns ratio, NS/NP. Equation 8 gives the transfer relation for the
flyback converter:

VOUT = VIN · (
NS/Np

)
.(D/1 − D) (8)
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Fig. 9 Flyback converter, [1]
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To dissipate the stored leakage energy in the magnetic core of the flyback trans-
former, as shown in Fig. 9 a snubber circuit consisting ofD2,RS andCS is used. In this
method, the leakage flux stored inside the magnetic core induces a positive voltage at
the non-dot end primary winding, which forward-biases the diode D2 and provides
the path to the leakage energy stored in the core, and clamps the primary winding
voltage to a safe value. During this process, CS is charged to a voltage slightly more
than the reflected secondary flyback voltage, which is known as flyback overshoot.
The spare flyback energy is dissipated in resistor RS. This clamp voltage is directly
proportional to RS. The flyback overshoot provides additional forcing volts to drive
current into the secondary leakage inductance during the flyback action. This results
in a faster increase in the transformer secondary current and improves the efficiency of
the flyback transformer. Flyback topology is recommended for output power ranged
from 5 to 150 W low-cost power supply. Because it does not use an output inductor,
cost and volume as well as losses inside the flyback converter can be optimized.

6 Push–Pull Converter

A push–pull converter is a transformer-isolated converter built on the basic forward
topology. The circuit and switching waveforms are given in Fig. 10. Q1 and Q2 are
complementary switches to low energy storage in the primary of center-tapped trans-
former, during alternate half cycles. The transformer steps down the primary voltage
and provides isolation between the input and the output terminals. The transformer
used is a center-tapped primary and a center-tapped secondary type. The switches
Q1 and Q2 are driven by control signals, such that both switches should create equal
and opposite flux in the transformer core. As given in Fig. 10b, this may be achieved
by choosing equal ON periods for Q1 and Q2.

The OFF time of Q2 is equal to TS/2, while the ON time is chosen to keep equal
and opposite flux in the transformer core. After the time period TS/2, while Q2

turns ON, the diode D6 is reverse-biased, and the complete inductor current starts
flowing through the diode D5 and transformer secondary NS1. As the input voltage
VIN is applied to the transformer primary NP2 in the reverse direction, the dot end
becomes negative with respect to the non-dot end. As the input voltage applies across
the transformer primary NP2, the value of the magnetic flux density in the core is
changed from its initial value of B2 to B1, as shown in Fig. 11. Assuming the number
of primary turns NP1 is equal to NP2, the number of secondary winding turns NS1 is
equal to NS2, the ON period of both switches is equal, the magnetic saturation in the
transformer core can be avoided, and the condition of equal and opposite flux in the
transformer core is achieved. After the TON period, Q2 turns OFF and remains off
for the rest of the period TS, as shown in Fig. 10. Note that TON must be less than
TS/2. The input–output relation for the push–pull converter is given in Eq. 9.

VOUT = VIN · (NS/NP).2.D (9)
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Fig. 10 Push–pull converter [3]

One basic principle of the push–pull configuration is that it requires a center-
tapped transformer. In this case, each winding is active only during one half of the
switching cycle, which means only 50% utilization of primary copper. The unused
copper occupies space in the bobbin and increases the primary leakage inductance.
The high voltage (2 ·V IN) stress on the switch, and 50% utilization of the transformer
primary makes the push-pull topology undesirable when the input voltage is high.
The push–pull topology is most favorable for low-voltage applications such as 110
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Fig. 11 BH curve for
push–pull transformer
voltage [1]

VAC input direct off-line SMPS or low input voltage DC/DC isolated converter for
the power rating of up to 500 W.

7 Half-Bridge Converter

The basic circuit and associated half-bridge converter waveforms are given in Fig. 12.
It uses a center-tapped transformer only at the secondary winding. The input voltage
V IN is applied to the input bridge formed by two capacitors C3 and C4 and two
MOSFET switches Q1 and Q2; therefore, it is called a half-bridge converter. The
bridge output is applied to the transformer primary NP. Since the capacitors C3 and
C4 are equal, they will be charged at DC voltage, equal to half the input voltage.
When the switchQ1 is ON,D3 is forward and the output capacitor is charged through
the output inductor L, while when Q2 is ON D4 is forward and supply current is in
the same direction to keep the output voltage as constant as possible. The control
of the output voltage is accomplished through the modulation of the ON period for
both Q1 and Q2 as given in Fig. 12b. In case when both switches are OFF, VOUT is
applied to the inductor L in the reverse direction; therefore, the inductor current IL
decreases linearly from its initial value of IL2 to IL1, as shown in Fig. 12e. To avoid
magnetic saturation in the transformer core, two conditions must be fulfilled:

• The number of NS1 is equal to NS2.
• The ON period of both switches should be equal.
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Fig. 12 Half-bridge converter [1]

Note that when either of the switches turns ON for the TON period, it affects the
entire input voltage V IN of the other switch. The input–output relation for half-bridge
rectifier is given by:

VOUT = VIN(NS/Np).D (10)

where NS = NS1 = NS2.

A small DC blocking capacitor is placed in series with the transformer primary,
to block the DC flux in the transformer core. The value of the DC blocking capacitor
is given by Eq. 11.
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CB = IPRIM.TONMAX/�V (11)

where

IPRIM maximum primary current
TONMAX maximum ON time of either MOSFET
�V permissible droop in primary voltage because of theDCblocking capacitor

The half-bridge topology is best suited for applications up to 500W and favorable
for high-voltage applications such as 220 VAC input direct off-line SMPS.

8 Half-Bridge Resonant Converter

High switching frequency (more than 100 kHz) is needed to reduce the volume
of the passive components and the overall converter size. However, increasing the
switching frequency decreases the efficiency due to losses in the power switches at
high switching speed. Resonant technique is used to achieve the above requirement.
There are three main resonant topologies available:

• 1—Series resonant converter.
• 2—Parallel resonant converter.
• 3—LLC (inductor–inductor–capacitor) resonant converter.

9 Series Resonant Converter (SRC)

As shown in Fig. 13, series resonant circuit (LR andCR) is connectedwith transformer
primary. As a result, primary current is approximately sinusoidal, and the current
through the switch at its transition period is minimized, hence reducing the switching
losses. It is preferred to operate at switching frequency, a little bit greater than the
resonance frequency as shown in Fig. 14 which plots of the normalized primary
current versus the relative operating switching frequency (f S/f res) for different values
of the circuit quality factor (Q), while achieving zero voltage switching (ZVS). The
major disadvantages of series resonant converter are:

– Light load regulation.
– High circulating energy.
– High turn-off current at high input voltage.
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Fig. 13 Series resonance
converter [1]

Fig. 14 Frequency response
of primary current [1]

Normalized Primary current

fs/fres

10 Parallel Resonant Converter (PRC)

As shown in Fig. 15, a resonance circuit LR and CR is connected in parallel with
the transformer primary. The operation switching frequency is also more than the
resonant frequency. The operating region is much smaller at low loads (Q is very
high), as given in Fig. 16. Given the same analysis as the series resonance converter,
we can conclude that a parallel resonant converter is not a good choice for a front-end
DC/DC converter. The major problems are: high circulating energy and high turn-off
current at high input voltage conditions.

Figure 17 gives parallel resonance converter waveforms where we can observe
that losses increase as VIN increases at the same switching frequency.
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Fig. 15 Parallel resonance
converter

Fig. 16 Frequency response
of primary current [3]

Normalized Primary current 

fs/fres

Fig. 17 Parallel resonance
converter waveforms [3]
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11 LLC Resonant Converter

The LLC resonant converter uses an inductor LR and a capacitor CR, connected
in series with the transformer primary. Another resonant inductor LM is connected
in parallel with the transformer primary, as given in Fig. 18. The presence of LM

results in double-tuned resonance as shown in Fig. 19. The LLC resonant converter
is designed to operate at a switching frequency higher than the resonant frequency set
by LR andCR. The benefit of using LLC resonant converter is the possibility of using
narrow switching frequency range with light load and zero voltage switching (ZVS)
capability even at no load. In addition, its special DC gain characteristic, as shown
in Fig. 19, makes the LLC resonant converter an excellent choice for the front-end
DC/DC application. The first resonant frequency is determined by LR and CR, while
the other resonant frequency is determined by LM, LR, CR as given by Eq. (12).

Fig. 18 LLC resonant
converter

Fig. 19 Frequency response
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FR1 = 1
(
2 · π · √

(LR · CR)
)

FR2 = 1
(
2 · π · √

((LM + LR) · CR)
) (12)

12 Full-Bridge Converter

A full-bridge or H-bridge converter is a transformer-isolated buck converter. The
basic circuit and waveforms are given in Fig. 20. The four switchesQ1 Q2 andQ3 Q4

are used to generate pulsatingACvoltage at the transformer primary. The transformer
is used to step down the primary voltage and also to provide isolation between the
input source and the output voltage VOUT. The voltage applied in the primary when
either of the switches is ON is half of the input voltage, thereby doubling the switch
current. In a push–pull topology, voltage applied in the transformer primary when
either of the switches is ON is full input voltage; however, the voltage stress of
the switch is twice the input voltage. This condition makes both half-bridge and
push–pull topologies unsuitable for applications require high power (>500 W).

A full-bridge converter adds the voltage properties of the half-bridge converter, to
the current properties of push–pull converter. The switch pair armsQ1 Q2 andQ3 Q4

are switched alternately at the selected switching period. In steady-state operation,
the arm Q1 Q2 is ON, the diode D4 becomes OFF, and diode D3 becomes ON.
The diode D3 carries the full load current through the secondary winding NS1. The
difference between the primary reflected voltage to the secondary and the output
voltage is applied across the inductor L in the forward direction to charge the output
capacitor and maintain the output voltage. The switch pair Q3 Q4 will be turned ON
after half of the switching period TS/2, as shown in Fig. 20c. Therefore, during the
TOFF period, there is a situation where all the four switches are OFF.

After the time periodTS/2, when the arm switchQ3 Q4 is turnedON for a period of
TON, the diode D4 carries the full load current through the secondary winding NS2.
As the input voltage is applied across the transformer primary, the switch carries
the reflected load current plus the transformer primary magnetizing current. The
difference of the primary reflected voltage to the secondary and the output voltage
is applied across the inductor L in the forward direction.

Assuming the number of secondary winding turns NS1 is equal to NS2, and to
avoid magnetic saturation in the transformer core, the TON period of both switch
pairs Q1 Q2 and Q3 Q4 should be equal. After the TON period of the switch pair Q3

Q4, it turns OFF and remains OFF for the rest of the period TS, as shown in Fig. 20b.
Note that when either of the diagonal switch pairs turns ON for a period of TON,

it applies the entire input voltage V IN to the other switch. The relation between the
input voltage and the output voltage is given by Eq. 13.

VOUT = 2.VIN · (NS/NP).D (13)
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Fig. 20 Full-bridge/H-bridge phase-shift ZVT converter. Ref. [2]

13 Application Considerations

Since the maximum voltage stress across any switch is V IN, and with the complete
utilization of magnetic core and copper, this combination makes the full-bridge con-
verter an ideal choice for high input voltage and high-power range SMPS (<1000W)
applications. Since in the full-bridge converter, four switches have been used, the
switching device loss is increased. For applications requiring output power of more
than 1000 W, the loss in the switching device becomes impractical to handle in a
full-bridge converter. The conduction loss of a MOSFET can be reduced by using a
good MOSFET, and switching losses can be reduced by using either a zero voltage
switching (ZVS during turn-ON transition), a zero current switching (ZCS during
turn-OFF transition), or both techniques. If the input current is shaped to be sinusoidal
to achieve ZCS, increases the peak and the RMS current through theMOSFET in the
high-power application, is also increased. This leads to the increase of the conduction
losses, so at high input voltage, the ZVS technique is preferred for the MOSFET.
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14 Full-Bridge/H-Bridge Phase-Shift Zero Voltage
Transition (ZVT) Topology

A full-bridge converter (Fig. 20) using the phase-shift ZVT technique is known as an
H-bridge phase-shift ZVT topology. The parasitic output capacitor of the MOSFETs
and the leakage inductance of the switching transformer are used as a resonant tank
circuit to achieve zero voltage across theMOSFET at the turn-on transition. There are
two major differences in the operation of a phase-shift ZVT and simple full-bridge
topology:

In a phase-shift ZVT converter, the gate drive of both of the diagonal switches is
phase shifted.

Both halves of the bridge switch network are driven through the complementary
gate pulse with a fixed 50% duty cycle.

The phase difference between the two half-bridge switching network gate drives
controls the power flow from primary to secondary, which results in the effective duty
cycle. Power is transferred to the secondary only when the diagonal switches are ON.
If either the top or bottom switches of both legs areONsimultaneously, zero voltage is
applied across the primary. Therefore, no power is transferred to the secondary during
this period. When the appropriate diagonal switch is turned OFF, primary current
flows through the output capacitor of the respective MOSFETs causing switch drain
voltage to move toward to the opposite input voltage rail. This causes zero voltage
across the MOSFET to be turned ON next, thus creating zero voltage switching
when it turns ON. This is possible when enough circulating current is provided
by the inductive storage energy to charge and discharge the output capacitor, the
respective MOSFETs. Figure 21 shows the gate pulse required, and the voltage and
current waveform across the switch and transformer.

A comparison table for themost commonly usedDC/DC converters is given in [4].

15 The DC/DC Converter as an MPPT

One of the important applications of SMPS as a DC/DC converter is in maximum
power tracing, especially when PV arrays are used as a power source. TheMPPT cir-
cuit usedmay be one of the topologies described above. A feedback loop is employed
with the DC/DC converter circuit to keep maximum power point tracking [5]. The
feedback action if correctly tunedwill keepmaximumpower transfer against climatic
and load variations for different types or technologies of solar cells. The operation of
the DC/DC converter for MPPT can be easily understood with the help of example 1.

Example 1 A PV module has its MPP at VMMP = 17 V and IMPP = 6 A at a given
level of solar irradiance. Themodule has to power a load with a resistance RL = 10�.
Calculate the duty cycle of the DC/DC converter if a buck–boost converter is used.



88 M. Abouelela

Fig. 21 Full-bridge/H-bridge phase-shift ZVT waveforms. Ref. [2]

Solution

The maximum power from the module is PMPP = VMPP. IMPP = 102 W.
If this power should be dissipated at the resistor, we have to use the relation
PL = V 2

L/RL and hence the voltage at the resistor VL = 31.94 V
Using Eq. (1.6) to find D; with VOUT = VL = 31.94 V and V IN = VPV = 17 V
We find D = 0.65.

16 Power Electronics and Fundamentals of Power Switches

16.1 Definition and History

Power electronics devices are applied when control and conversion of electrical
power are needed, and usually they operate as switches. The introduction of silicon
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controlled rectifiers (SCRs) led to the development of a new area of application called
the power electronics. The first known electronic switch was the mercury arc rectifier
(1900). The first semiconductor device working as a voltage-controlled power switch
was the silicon controlled rectifier (SCR) and was available by 1957 where four
layers’ silicon structure was used to achieve switching characteristics at high power.
Although the power bipolar junction transistor (BJT) was already available, its power
capabilities were limited to a few tens of watts. In general, the SCRs have higher
power range and its application area is spread to many fields such as drives, power
supplies, aviation electronics and high-frequency inverters. Starting from this date,
we can say that a technology related to power electronics had been originated. The
employment of power electronics in renewable energy field is indispensable as we
need to convert and control the available energy from the renewable sources such
as solar and wind energy into electrical energy suitable to be used by our domestic
applications. Circuits like inverters, converters and mechanical drives are typical
applications of power electronics used with renewable energy sources.

16.2 Classification of Power Semiconductors

The power semiconductors may be classified according to fabrication materials and
applications [6].

a. Power Diodes

Apower diode used a polarity switch for high-power applications like rectification of
high-voltage and high-current rectifying circuits. It requires a finite time for switch-
ing. High switching speed is necessary for most of power converter applications to
avoid using large component (inductors and capacitors) in the filtering circuit. We
have two general classifications for power diodes:

– General purpose: Rating up to 6000 V, 4500 A.
– High speed (or fast recovery): Rating up to 6000 V, 1100 A, reverse recovery time
0.1–5 µs; it is essentially assigned for high-frequency switching.

Figure 22 shows the switching characteristics of the diode during turn-off time.
If the diode is suddenly reversed, it keeps conducting resulting in current flowing in
the opposite direction. This is because of a capacitive effect due to stored charges
in its depletion layer. The diode current flows for a reverse recovery time tRR. From
Fig. 22, we can define the following time intervals:

Time T a: Charges stored in the depletion layer are removed.
Time T b: Charges from the semiconductor layer are removed.
Total reverse recovery time is TRR = Ta + Tb
So, working at high switching speed needs a diode with a relatively low reverse

recovery time to avoid excess power loss during transition from ON to Off states.
Schottky diode utilizes a Schottky barrier consisting of a metal–semiconductor

junction unlike conventional diodes that provide diode characteristics through a PN
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Fig. 22 Turn-off characteristics of power diode: a Variation of the current If ; b variation of the
voltage drop Vf ; and c variation of the power loss [1]

(semiconductor–semiconductor) junction. The structure of Schottky diode is given in
Fig. 23a, while its IV characteristic compared to the conventional PN junction diode
is given in Fig. 23b. This results in much lower VF characteristics while enabling
faster switching speeds.

Typical high-power Schottky diode available in the market is the APT100S20B
fromMicrosemi [7] and hasmaximum rates of: 200V reverse voltage, 120A forward
and 70 ns reverse recovery time.

b. Thyristors

A thyristor is a three-terminal solid-state device with a four-layer structure as given
in Fig. 24a with the IV characteristics given in Fig. 24b. Its basic function is to work
as a voltage-controlled switch that may support high-power capabilities. It conducts
when the gate receives a current trigger, continuing to conduct until the voltage
between the anode and the cathode is reversed, or until the voltage is removed (by
some other means).

Once a thyristor is in a conduction mode, the gate circuit has no control and the
thyristor continues to conduct. In conduction mode, forward voltage is very small
(0.5–2 V). Thyristor can be turned off by making the voltage between anode and
cathode≤ 0V. Line-commutated thyristors are turned off due to the sinusoidal nature
of their input voltage. Forced-commutated thyristors are turned off by an extra circuit
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Fig. 23 a Schottky diode structure and symbol. b IV characteristics

called commutation circuitry. Natural or line-commutated thyristors are available
with rating up to 6000 V, 4500 A. Turn-off time became very small (10–20 µs in
3000 V, 3600 A). The thyristors are mostly suitable for controlling AC power and
rarely used in DC/DC converters and MPPT as well. To obtain power control at both
half cycles, two thyristors may be connected back to back, and such device structure
is called TRIAC and widely used in AC power controllers like heaters, light systems
and speed control.

c. Power Transistor

There are several types of transistors that can be used as power devices. The types
of power transistors are:
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Fig. 24 a Thyristor structure. b IV characteristics

– Bipolar junction transistors (BJTs).
– Power MOSFETs.
– Insulated-gate bipolar transistors (IGBTs).

d. Bipolar Junction Transistors (BJTs)

Power bipolar junction transistor (BJT) is the first semiconductor device that allows
full power control through its turn-on and turn-off operations. The BJT behavior is
a current-controlled device with typical IV characteristics as shown in Fig. 25. It is
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used in power converters at frequency below 10 kHz and power ratings up to 1200 V,
400 A.

When VBE > 0, IB > ITH conduction (on) mode.
When VBE < 0, IB < ITH no conduction (off) mode.
As that of a power diode, BJT has large off-state blocking voltage and large

on-state current density which makes the BJT losses relatively high.
BJT has lowDC gain (β) and large saturation voltageVCEsat. The NPN structure is

mostly preferred than PNP in power control due to its higher switching speed. Typical
absolutemaximum rating for a high-powerBJTBUV48A fromSTMicroelectronics
is given in [8],wherewe candeduce thatBJTpower transistor consumes excess power
loss in both input and output circuits due to the values ofVBE, IB andVCE at saturation.
Other electrical parameters for the BJT BUV48A with test conditions—pulse test:
pulse duration ≤300 µs and duty cycle ≤2%—are also available in [8].

e. Power Metal–Oxide–Semiconductor Field-Effect Transistors (MOSFETs)

The MOSFET is a three-terminal device that works as voltage-controlled current
source. The MOSFET behavior is a voltage-controlled device with typical IV char-
acteristics as shown in Fig. 26 where we can deduce that the MOSFET can be used
as a switch between drain D and source S under the control of voltage between gate
and source VGS.

The ON-state resistance of a MOSFET has no theoretical limit, so the ON-state
loss can be far lower than a BJT. The ON and OFF switching time of a MOSFET
depends on the presence or absence of a key charge quantity in the device and is
equal to the time required to insert or remove this controlling charge quantity. It is

Fig. 25 NPN BJT symbol and typical IV characteristics

Fig. 26 MOSFET symbol and typical IV characteristics
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used in high-speed power converters at frequency range of several tens of kHz and
power ratings up to 1000 V, 100 A (relatively low power ratings).

When VGS > VGTH, conduction (on) mode ID > 0.
When VGS < VGTH, no conduction (off) mode. ID = 0.
VGTH is the threshold voltage of theMOSFET defined as the voltage between gate

and source at which the device starts conducting.
The input circuit consumes almost no power; hence, there is no need to drive

current from the control circuit like μ-controllers or CMOS logic gates which in
most cases have low drive current capabilities. A MOSFET has positive temperature
coefficient for the ON-state resistance, which makes it easy to parallel many small
devices to deliver higher current. Figure 27 gives the equivalent circuit of aMOSFET
with a parasitic capacitor and body diode. When applying high input to the gate, the
capacitor CGS starts charging. As soon as VGS reaches VGTH, ID starts increasing
from zero to its steady-state value. During this period, the gate current charges also
both capacitors, CGS and CGD. The drain-to-source voltage remains at VDS so long
as the drain current (ID) reaches the steady-state value (ID). The time required for
drain current to reach its steady-state value “ID”, as shown in Fig. 28, is known as
the current rise time TRI. When drain current reaches ID, VGS is clamped to VGSID,
and the entire gate current starts flowing through CGD to charge it. This causes the
drain-to-source voltage VDS to drop. The rate of change of VDS is given by Eq. 14.

IGATE = (VG − VGSID)

RG

�VDS

�t
= IG

CGD
(14)

The sequence is reversed when the MOSFET is turned OFF. The gate-to-source
voltage first decays toVGSID, and then the drain-to-source voltage starts rising toward
VDS. As shown in Fig. 29, when the drain-to-source voltage reaches its steady-state
value (VDS), ID starts decaying toward zero, and also VGS and IG decay to zero. The
time required for ID to reach zero is known as turn-off delay TF1. There are three
types of losses in a MOSFET:

Fig. 27 MOSFET
equivalent circuit
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Fig. 28 MOSFET turn-on characteristics

Fig. 29 MOSFET turn-off characteristics
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1 − Conduction loss, 2 − Switching loss and 3 − Gate charge loss.

At low frequencies, conduction loss is dominant, but as we begin switching at
frequencies between 100 and 150 kHz, switching and gate charge losses start con-
tributing a significant amount of power dissipation. Conduction loss depends on the
ON-state resistance of MOSFET (RDSON), which can be reduced by selecting a low
RDSON MOSFET.

The switching losses of theMOSFET are given by the area under thewaveforms of
VDS and ID, shown shaded in Figs. 28 and 29. The switching losses of the MOSFET
can be reduced by selecting a MOSFET with lower CDS capacitance and shifting
the current ID and the voltage VDS waveform to reduce the overlap period during
transition. Loss due to gate charge is caused by charging the gate capacitance and
then dumping the charge to ground in every switching cycle. For practical consid-
erations, a lower RDSON device comes with high gate capacitance which limits the
switching speed (longer turn-on and turn-off time) and increases switching losses.
While selecting a MOSFET driver, care must be taken to ensure that the driver can
source and sink the maximum peak current required by a MOSFET gate to turn
ON and OFF in a given specified time. A MOSFET gate needs large current as the
device turns ON and, for the rest of the period, a high gate-to-source voltage at low
current level. The general rule of faster switching time to reduce the switching loss
will cause high-frequency noise because of high�V /�t and high�I/�t, which may
cause an increase of the EMI filter size. The safe operating area (SOA) of aMOSFET
is decided by maximum drain current IDMAX, internal junction temperature T J and
the breakdown voltage BVDS rating. There are two basic ways to avoid theMOSFET
over stressing: using device with a higher rate or using snubber circuit [3].

f. Insulated-Gate Bipolar Transistor (IGBT)

The IGBT is a power switching transistor which combines the advantages of MOS-
FETs and BJTs for use in power supply and motor control circuits, which makes it
ideal as a semiconductor power solid-state switch. The result of this hybrid combi-
nation is that the “IGBT” has the output switching and conduction characteristics
of a bipolar transistor but is voltage-controlled like a MOSFET. High-current and
high-voltage BJTs are available, but their switching speeds are slow, while power
MOSFETs may have higher switching speeds, but high-voltage and high-current
devices are expensive and hard to achieve. The advantage gained by the insulated-
gate bipolar transistor device over a BJT or MOSFET is that it offers greater power
gain than the standard bipolar-type transistor combined with the higher voltage oper-
ation and lower input losses of the MOSFET. In effect, it is a FET integrated with
a bipolar transistor in the form of Darlington-type configuration as given in Fig. 30
which gives the IGBT structure, symbol and IV curve.

Also, the IGBT has a much lower “on-state” resistance, RON, than an equivalent
MOSFET. This means that the I2R drop across the bipolar output structure for a
given switching current is much lower. The forward blocking operation of the IGBT
is identical to a power MOSFET.
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Fig. 30 IGBT structure and IV characteristics [9]
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When used as static controlled switch, the insulated-gate bipolar transistor has
voltage and current ratings similar to that of the bipolar transistor. However, the
presence of an isolated gate in an IGBT makes it a lot simpler to drive than the BJT
as much less drive power is needed.

An insulated gate bipolar transistor is simply turned “ON” or “OFF” by activating
and deactivating its Gate terminal. Applying a positive input voltage signal across
the gate and the emitter will keep the device in its “ON” state, while making the input
gate signal.

Themain advantages of using the insulated-gate bipolar transistor over other types
of transistor devices are its high-voltage capability, low ON-state resistance, ease of
drive, relatively fast switching speeds and combined with zero gate drive current
makes it a good choice for moderate speed, high-voltage applications. Different
applications of power semiconductor devices are shown in Fig. 31. Recently, Toshiba
introduced a modified structure of the IGBT named as the injection-enhanced gate
transistor (IEGT). It is a voltage-driven device for switching large current. IEGTs are
fabricated using a unique emitter structure. The outstanding turn-off performance
and the wide safe operating area of IEGTs make it possible to reduce the power
consumption, shrink the size and improve the efficiency of equipment. Figure 32
gives the market share between several suppliers.

The design of the passive components of a given DC/DC converter is beyond
the scope of this chapter; the reader may find more details about the design of the
coupling transformer and smoothing filter in the literatures. The appropriate SMPS
topology can be selected based on input voltage, output power and output current

Fig. 31 Power versus switching frequency
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Fig. 32 Power semiconductor market [10]

Table 1 SMPS selection guide [1]

Input voltage Output power Preferred topology

Universal input (90–264) VAC Po < 150 W. Load current <
10 A

Flyback, forward

Universal input (90–264) VAC Po < 150 W. Load current >
10 A

Forward

Universal input (90–264) VAC 150 W < Po > 350 Two-switch forward,
half-bridge, push–pull

Universal input (90–264) VAC Po < 500 W Half-bridge, push–pull

V in > 350 VDC Po < 750 W Half-bridge

V in < 200 VDC Po < 500 W Push–pull

V in > 350 VDC 500 < Po > 1000 W Full-bridge

V in > 350 VDC Po > 1000 W ZVT full-bridge

V in > 350 VDC Po > 2000 W More than one ZVT
full-bridge in parallel,
interleaved with more than
one ZVT full-bridge

(see Table 1). The selection of topology may differ to meet some of the specific
requirements of the power supply including cost, size and personal experience of the
designer.
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g. The Power Module

The power modules can be built either using discrete devices available from sev-
eral suppliers [7] or using complete power modules like that shown available from
CREE [11].

h. The Control Module

The control function can be implemented using analog or digital techniques to pro-
duce pulse-width modulation (PWM) signal that drives the power devices [5]. The
digital control can be accomplished using programmable digital circuits mainly
µ-controller-based or field-programmable gate array (FPGA) where any of them
may be programmed to implement the perturb and observe (P&O) algorithm or the
incremental conductance method.

i. The Driver Circuit

Driver circuits aremost commonly used to amplify signals from controllers or micro-
controllers in order to control power switches in semiconductor devices. Driver cir-
cuits often take on additional functions which include isolating the control circuit
and the power circuit, detecting malfunctions, storing and reporting failures to the
control system, serving as a precaution against failure, analyzing sensor signals and
creating auxiliary voltages. Transformers or optocouplers (OCs) are often used for
isolation. Figure 33 shows typical driver circuit for power MOSFET where the 4N25
OC is used for isolation.

j. Integrated Circuit Driver

The driver circuits for both MOSFET and IGBT are available in single IC chip from
different manufacturers. Fig. 34 examples of integrated driver: TLP 5214 driver

Fig. 33 Typical driver circuit for power MOSFET
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Fig. 34 TLP 5214 internal
circuit [12], an example of
integrated driver circuits.
TLP 352 internal circuit [13]

TLP 352 internal circuit [15]. 

[12], TLP 352 driver [13]. The TLP 352 is a DIP8 package that contains opoto-
coupler and two MOSFET driver circuits in totem pole output that can both sink
and source current. The TLP 352 is ideal for IGBT and power MOSFET gate drive.

17 Design of MPPT

In order to optimally design MPPT module for a given PV array, several parameters
must be considered. These parameters are related to different constraints needed to
be defined before starting the design and define the needed components. We can
summarize these design parameters as:

– The input voltage range.
– The output voltage range.
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– The input–output voltage relation.
– The power available from the source and that needed by the load.
– The load profile: constant voltage, constant current and constant power.
– The load type: resistive, reactive, electric load only or electromechanical (e.g., DC
motor drive water pump in irrigation system).

– The load dynamic behavior: static (e.g., battery charger, low-speed (motors +
mechanical load) and high-speed time variation (e.g., digital electronic circuits or
computer board).

– After defining the above parameter which may impose some constraint on the
design, we have to decide about the suitable component to be used for implement-
ing the basic building blocks described in Sect. 4. With the help of information
provided above in this chapter, we can decide about:

– The topology of the DC/DC converter that will act as a MPPT.
– The power switch type needed to meet the power input–output ranges (MOSFET
BJT or IGBT).

– The load directly coupled or need some galvanic (transformer) isolation.
– The control type: analog or digital.
– The sensor needed to complete the closed-loop function of the controller.
– The control algorithm.
– The type of the μ-controller: P&O or incremental conductance.
– The capabilities of the µ-controller as regarding: processing speed, resolution of
analog-to-digital converter and mathematical efficiency (support floating point or
some digital signal processing algorithms).

– Power consumption of the control circuit and switch losses.

The scope of this book cannot cover the consideration of the above constraints
when designing anMPPT, but we can consider a design example to demonstrate how
we can make use of the information given in this chapter.

Design Example:

Example 2 Design an MPPT used in PV solar streetlamp with lamp power = 24 W
at 12 V.

Solution

The system under consideration is an off-grid solar streetlamp. The solar streetlamp
consists of high-power LEDs, a lead-acid battery, a solar controller and a solar panel.
Assuming the streetlamp is to be illuminated for 12 h/day in the evening, and then
the total energy needed by the load will be:

The LampEnergyConsumption/day = 24 × 12 = 288Wh.

Assuming 15% losses in MPPT and the battery charger circuit, then the needed
energy to be supplied from the PV source will be:

PV energy = 288 × 1.15 = 331.2Wh
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Excess solar capacity needs to be considered for charge recovery from a cloudy
day giving the designer a fixed number of days from which to recover from a series
of cloudy days (recharge time). Assuming 20% cloudy days/year, then about 20%
PV excess energy is needed. Assuming on the average 5 h insulation/day, then the
power of the PV panels needed is:

PV panel power = 331.2 × 1.2/5 = 80W

From the available panel in the market, we can select 80Wmodule ready for 12 V
battery charging with

VOC = 19.8V and ISC = 5.95A and

VMPP = 14.95&IMPP = 5.35A

At STC (1000 W/M2, 25 °C)
From the above data, we can decide about the following constraints about the

MPPT:

VIN12V < VIN < 21V

VOUT11.8 < VOUT13.8V

This output voltage limit is imposed by the 12 V battery charging states.

IIN0.6A < IIN < 6.5A

The suitable topology for implementing an MPPT for the above requirements is
the flyback converter given in Fig. 9. The following components can meet the design
constraints:

Q1 is a power N-MOSFET 60 V 30 A (with built-in flywheel diode) from ON
semiconductor ref. NTD5414NT4G.

D1 is a Schottky power rectifier from On semiconductor ref. MBR3100RLG.
D2 is a 100 V Schottky diode from ON semiconductor ref. MBR1100RL.
C is a cap. 16 V 220 µF ± 20% from United Chemi-Con ref.

ESMG160ELL221MF11D.
The transformer is 28.6 µH 10% from ICE ref. TO08029.
The snubber circuit parameters are:
C ceramic chip capacitor 560pF from Vishay ref VJ1206Y561KBBAT4X.
R 10 K� resistor ± 1.0% from Vishay/Dale ref CRCW120610R0FKEA.
Using the output–input relation for the flyback converter (Eq. 8) and with

NS/NP = 1 and using the minimum and maximum values for VOUT and V IN, we
can find the duty cycle range as: 0.512 < D < 0.559. The driver circuit for the power
MOSFET may be the TLP 352 given above. The pulse-width modulator can be
implemented using any general purposes μ-controller board, for example Arduino
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Uno with built-in PWM and 10-bit analog-to-digital converter. The panel current
and voltage are measured using current and voltage sensors and used in the P&O
algorithm to control the duty cycle of the PWM in the above range of the duty cycleD.

18 Conclusions

This chapter deals with power electronics and design aspects related toMPPT for PV
systems. The basics of switched-mode power supplies are covered in detail where
attention is focused on hardware and circuit design.AnMPPT for PVpanels is simply
aDC toDCconverter based on the SMPSprinciple of operationwhile considering the
nonlinear IV characteristics of the PV panel as a power source. The different topolo-
gies for theMPPT are given in detail with some comparative analysis whichmay help
the reader to choose the topology which matches the requirements of the considered
PV installation. The specification of the electronic components used for circuit build-
ing is given in detail with some practical examples. Several techniques for building
PV MPPT using analog or digital and microcontroller-based control algorithms are
also presented without going into the details of the algorithms. MPPT algorithms
are simple enough, but implementing a working MPPT controller is not a simple
task, because it is required to know the particularities of the underlying switching
converter and the load profile and type. Using computer simulation methodologies
available in most of scientific papers published onMPPT is helpful, but for real hard-
ware, the readers find themselves lacking vital information. Through this chapter, the
needed HW information is covered with specifications, circuit analysis and design
examples. The reader will be then able to design, implement and test anMPPT circuit
for a given load profile.
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Maximum Power Extraction
from the Photovoltaic System Under
Partial Shading Conditions

Hassan M. H. Farh and Ali M. Eltamaly

Abstract Partial shading condition (PSC) has a bad effect not only on the shaded
PV modules/arrays itself but also on the output power generated from the partially
shaded photovoltaic (PSPV) system. It reduces the output power generated from the
photovoltaic (PV) system and contributes in hot spot problem that may lead to ther-
mal breakdown of shaded PV modules. Under PSC, multiple peaks, one global peak
(GP) and many other local peaks (LPs) are generated in the P–V curve. This chapter
concentrates on alleviating the partial shading effects and extracting the global max-
imum power available from the PSPV system. This has been achieved using the
suitable and the best PV system design topologies and the efficient maximum power
point tracker (MPPT) techniques in tracking the GP under PSC. Therefore, it is con-
cluded that the partial shading (PS) mitigation techniques can be classified into PV
system design topologies andMPPT techniques to not only alleviate the PS effects of
the PSPV system but also to extract the GP. The PV system design topologies consist
of the bypass and blocking diodes, PV system architectures, PV array configuration
and PV array reconfiguration, whereas the MPPT techniques concentrate the most
efficient heuristic MPPT in tracking the GP under PSC.

1 Introduction

Renewable energy systems are considered as the power of the future. Solar photo-
voltaic (PV) energy systems represent the most promising option of the renewable
generation systems (RGSs) which are clean, abundant, noise-free and friendly to
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the environment compared to the conventional energy resources such as natural
gas, fossil fuel, coal, etc. For these reasons, RGSs, especially solar and wind, are
attracting interest all over the world. In addition, tracking the maximum power from
these RGSs and choosing a suitable power electronics converter that matches the util-
ity grid requirements are considered to be a hot development area as it can improve
the system’s efficiency, reliability, power quality and flexibility [1–9].

Partial shading problem occurs when some PV cells and/or modules are shaded
due to different reasons. It may occur due to reasons related to the site itself, which
can be overcome at the beginning during the PV system installation. For example,
choosing the suitable and best sites for the PV system installation in terms of site
characteristics (temperature and irradiance) and no nearby buildings and towers may
play a significant improvement in the output power generated and overall efficiency
of the PV system. On the other hand, it may occur due to inevitable reasons such as
neighbouring buildings, towers, trees, dust, degradation due to ageing and moving
clouds or some other objects. The shaded PV cells/modules are forced to carry the
high current of the other unshaded cells/modules and consume power—act as a load-
—instead of generating power. As the percentage of the shading area increases, the
power losses also increase and the output power decreases. The partially shaded pho-
tovoltaic (PSPV) condition reduces the generated power and contributes to hot spot
problems that may lead to thermal breakdown of shaded PVmodules. Therefore, the
shaded PV cells/modules/arrays have a negative effect on the output power captured
and overall efficiency of the PSPV system. The power losses of the PV system due
to partial shading or inaccurate global maximum power tracking is extraordinarily
high and may exceed 70% of the total power generated. Consequently, tracking the
global maximum power is of interest in order to achieve high power efficiency, less
power losses and high output power [10–13].

Under the uniform condition, a unique peak will be generated as shown in Fig. 1a.
On the other hand, under partial shading conditions (PSCs), different radiation on
each PV array generates different power from one PV module/array to another. In
addition, multiple peaks, one global peak (GP) and many local peaks (LPs) will be
generated due to using bypass diodes for protecting the shaded PV modules/arrays
from the hot spot points and thermal breakdown as shown in the P–V characteristic
of Fig. 1b.

Conventional MPPT techniques especially incremental conductance (IncCond)
and perturb and observe (P&O) followed by hill climbing (HC) and constant voltage
(CV) are efficient, accurate and reliable in tracking the unique peak under uniform
conditions (unshaded) but they fail to track the GP and stick at the first peak regard-
less of whether it is GP or LP under PSCs [5, 14, 15]. Whereas, heuristic MPPT
techniques-based bio-inspired such as flower pollination [16], ant bee colony [17,
18], firefly [19, 20], ant colony [21], cuckoo Search [22], particle swarm optimization
(PSO) [12, 22–25] and grey wolf optimizer (GWO) [26] algorithms can follow the
GP under PSCs.
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Fig. 1 P–V characteristic of the PV array: a uniform condition and b partial shading conditions

2 Partial Shading Mitigation Techniques

PS mitigation techniques have been classified into two major categories which are
PV system design topologies and MPPT techniques as shown in Fig. 2. This chapter
will concentrate on the PV system design topologies to maximize the output power
generated and alleviate the PS effects. The PV system design topologies include the
bypass and blocking diodes, PV system architectures, PV array configuration and PV
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Fig. 2 Classification of PSPV mitigation techniques

array reconfiguration. Also, it will concentrate on the most efficient heuristic MPPT
techniques such as PSO, GWO and FPA that can track the GP under PSC.

2.1 PV System Topologies

2.1.1 Bypass and Blocking Diodes

Bypass diodes are connected across one or more PV modules while the blocking
diode is connected in series with the PV array to prevent the reverse current from
flowing through shading modules. Under uniform conditions, the bypass diode will
be in reverse bias but it will be in conduction mode under non-uniform or PSCs as
shown in Fig. 3. The bypass diode has two basic important functions [13, 27–29]
which are as follows:

(1) Protection of the PV module against hot spot problem and thermal break-
down that may be occurred. High reverse voltage will be generated across the
shaded cells or modules that are not protected using bypass diodes. Therefore,
it consumes instead of generating power [12, 13]. Therefore, the power losses
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Fig. 3 PV array with the
bypass and blocking diodes

Blocking diode

By-pass diode

(a) (b) (c) (d)

Fig. 4 PV array configurations: a SP, b TCT, c BL and d HC

increase and the total output power generated and the PV system’s efficiency
both decrease.

(2) Reduces the reverse voltage drop across the shaded cells in the modules, thus
limiting the shading voltage drop to the diode reverse voltage (0.4–0.7 V). The
diode reverse voltage improves the overall output voltage of the module. In
addition, the consumed power of the shaded cells will be reduced. This power
consumption reduction leads to a reduction in the local heating at the shaded
area and extends the lifetime of the modules [30]. As a result, it alleviates the
PS effects considerably [13].

2.1.2 PV Array Configuration

Partial shading effects can be alleviated using different configurations for the PV
modules. In recent advances, several PV array configurations have been presented in
many literatures [31–34] such as series, parallel, series–parallel (SP), total-cross-tied
(TCT), bridge-linked (BL) and honeycomb (HC) configurations. The most famous
PV array configurations are SP, TCT, BL and HC configurations which are shown in
Fig. 4.
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Table 1 Merits and demerits of different PV array configurations

Configuration Merits Demerits

SP • Efficient under uniform conditions
• Good cost efficiency
• Low complexity

• SP is more sensitive to different
radiation levels than others, and the
power decreases sharply during PS

• Not applicable with PS

BL • Applicable with PS
• BL has higher peak power by 2.5%
than SP

• Continue to feed the grid during PS

• Medium complexity
• Moderate efficiency

TCT • Applicable with PS
• TCT has better performance, less
susceptible to PS, more reliable,
higher peak power values and
efficiency

• Continue to feed the grid during PS

TCT has maximum wiring
connection and the complexity is
higher than other configurations

HC • Applicable with PS
• Medium MPP improvement
• Continue to feed the grid during PS

• Medium complexity
• Moderate efficiency

Kaushika et al. [35] investigated the performance of the three different configura-
tions (SP, TCT and BL) in PV arrays to find which configuration was less susceptible
to the PS problem and electrical mismatch. The results proved the superiority of TCT
and BL in terms of maximum power and fill factor for all cases of fresh cells, soiled
cells and even shaded ones [35]. This is supported by the studies of Karatepe et al.
[36] and Wang et al. [37] which revealed that TCT performs better compared to
other configurations in terms of maximum power, fill factor and normalized array
efficiency using two different methods, the analytical method and piecewise linear
parallel branches model [36, 37]. On the other hand, SP is more sensitive to different
radiation levels than others, and the power decreases sharply during PSCs. Also,
the grid power decreases rapidly for the SP, whereas TCT and BL continue to feed
the grid even after the occurrence of PSCs. In addition, TCT and BL configurations
increase the maximum power by 2.3 and 3.8%, respectively, compared with the SP
configuration [31, 38]. In conclusion, TCT has better performance, less susceptible
to PS effects, more reliable, higher maximum power and efficiency. Table 1 shows
the merits and demerits of different PV array configurations.

2.1.3 PV System Architectures

PV system architectures refer to the art of designing and constructing PV modules.
Different PV architectures can track the GP of individual PV modules. Hence, the
PV architectures which enable MPPT for each module will be more suitable for
partial shading, but this will increase the overall cost of the system. The PV sys-
tem architectures can be classified into centralized architecture, series-connected
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Fig. 5 PV system architectures: a centralized, b series-connected MIC, c parallel-connected MIC,
d micro-inverters and e interleaved DC–DC converter

micro-converters, parallel-connected micro-converters, micro-inverters and inter-
leaved DC–DC converter which are shown in Fig. 5 [5, 31, 39]. Centralized archi-
tecture is the most conventional architecture and tracking of the GP of individual
PV modules is not available. Therefore, this architecture is more susceptible to PSC
and electrical mismatch loss (MML). However, it is suitable to low-cost and low-
power PV systems [40]. This type of architecture also cannot achieve GP tracking
for each individual module; therefore, it will cause lower MML while tracking the
MPP of individual PV modules. To avoid this shortage, both the series-connected
and parallel-connected MICs apply a DC–DC converter to track the GP of each MIC
and then feed the resulting power to a central inverter. These two methods increase
the cost to some extent due to the cost brought by the application of a large amount
of power electronics [31, 41]. MIC topology is adequate to PSC to extract the max-
imum power available from the whole PV system where each PV array extracts its
own MPP through its own MPPT controller [40, 42]. Hence, both series-connected
and parallel-connected MICs can track the GP where series-connected MIC can
be used in high-voltage applications while parallel-connected MIC can be used in
low-voltage applications and enhance the DC-link voltage regulation.

One of the earliest works on interleaved DC–DC converter, dated back to over
40 years ago where it was used to design a power supply for the Jet Propulsion
Laboratory [43]. Benyahia et al. [44] investigated the P&OMPPT performance with
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IBC for fuel cell generators supplying electricity to power trains. In another study,
Arango et al. [45] proposed an asymmetrical interleaved DC–DC converter and a
voltage multiplier cells combined together (boost, buck-boost and flyback-based)
for PV and fuel cell applications to achieve high output voltage and ripple reduction
in the generator and load. However, variable DC-link voltage was generated and two
DC–DCconverters had to be used for eachPVarray that resulted in total cost increase.
A study by Deihimi et al. [46] also investigated the performance of variable IBC
(series-connected) but it interfaced with multi-energy sources of different outputs.
Although variable IBC provides higher voltage gains in addition to a wide range
of applications from low to high voltage/power, the DC-link voltage is unstable
(variable) [47]. Hence, the whole system will operate in asymmetric condition and
the maximum power generated from PSPV cannot be captured. Therefore, variable
IBC is not able to mitigate and fix the DC-link voltage variations. As a result, it is
not preferred to be applied with the PSPV system where the irradiance of all PV
modules/strings/arrays is different, and the output voltage/current of each DC–DC
converter is not the same. Hence, fixed IBC is the best choice to enhance the stability
of DC-link voltage. Recently, many literature studies [48–58] have been done to
prove the superiority of the interleaved DC–DC converters compared to the CBC
with constant input power in terms of ripples, energy savings, efficiency, steady
state, electromagnetic emission and reliability. For example, the researchers in [50,
53, 55] have shown the possibility of using IBC with PV in terms of reliability
evaluation, ripple reduction and faster transient response. However, they performed
their studies on standalone PV without PS in order to highlight the IBC performance
where the input power is constant, which is different under PSCs. On the other
hand, the researchers in [46, 51, 56, 59, 60] demonstrated the possibility of using
IBC for high-voltage applications compared to the CBC, whereas Rehman et al.
[61] introduced a detailed comparisons of interleaved DC–DC converter topologies
in terms of cost, reliability, flexibility and efficiency that can be used in renewable
energy applications. The latter proved that buck and boost are more reliable, less cost
andmore efficientwhileCuk and single-ended primary-inductor converters (SEPICs)
are more flexible than others as they are ripple-free and able to increase or decrease
the output voltage. Finally, Ngai-Man et al. [58] proved the better performance of a
two-phase IBC using the SiC diodes compared to IBC using the Si diodes in terms
of higher efficiency and power density. Based on the comparisons of all PV system
architectures in terms of applicability with PS, the merits and demerits are shown in
Table 2, whereas the previous studies on IBC for different applications is listed in
Table 3.

2.1.4 PV Array Reconfiguration

Once PS is detected, reconfiguration of PV array between fixed and adaptive arrays
will be activated via a controllable switching matrix as shown in Fig. 6. The basic
function of the reconfiguration process is to provide the best connection to alleviate
the PS effects and increase the power extracted from the PVarray [31]. Determination
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Table 2 Comparisons of the PV system architectures

Topology Applicable to PS Merits Demerits

Centralized [39] NA • Suitable under the
uniform condition

• Less cost

• Conventional
• GP tracking is not
available

• More susceptible to
PS and mismatch
power loss

Series/parallel MIC
[31]

Yes • Series and parallel
MIC are applicable
with PS

• Series MIC are
suitable with HV
applications

• Parallel MIC are
suitable with LV
applications

• Large scale preferred

• The total cost
increased

Micro-inverter NA • Allows the monitor
of the power
production of each
individual panel

• Not applicable with
PS

• DC-link voltage
un-controllable

• More expensive

Multi-input dc–dc
converter [42]

Yes • Applicable with PS
• Maximum power
available is achieved

• DC-link voltage is
regulated

• Conventional MPPT
techniques are
available

• Larger number of
inductor and
semiconductor
devices are required
which increase both
cost and size

of the most appropriate points for the switching matrix is very important in terms
of cost and energy efficiency in addition to the TCT configuration in adaptive array
facilitates the interconnection with fixed array and maximizes the power captured
from the PV system. However, more switching elements and more complex connec-
tion structure need to be used. On the other hand, high cost occurs in SP connection
structure adaptive panels where the PV modules are connected in series to fixed part
[62–65]. Mathematical formula for reconfiguration of PV array grid-connected was
proposed by the researchers in [65–67]. However, it is limited to a fully reconfig-
urable array and does not indicate the global optimal reconfiguration directly. Also,
it is more suitable for a small number of PV modules. El-Dein et al. [68] covered
the limitations and shortcomings of the previous studies through the mathemati-
cal formula for PV array reconfiguration as a mixed integer quadratic programming
problem. The optimal reconfiguration can be found directly using a branch and bound
algorithm. This formula is suitable with fully or partially reconfigurable array and
can be used for a large number of PV modules. Also, Karakose et al. proposed an
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Fig. 7 MPP variation for reconfiguration

efficient algorithm based on GA used for PV array reconfiguration. This algorithm
is suitable for a great number of panels and it provides efficient results in terms of
operating speed [69]. On the other hand, the simulation results proved that the output
power can be increased between 10 and 30% using the reconfiguration process as
shown in Fig. 7 [31, 62, 63], whereas the experimental prototype in [39] improved
the output power by 45% under certain PSC compared to the system without recon-
figuration. Hence, the array output power and efficiency will be increased. Also, the
reconfiguration will reduce the effect of bypass diodes through disappearingmultiple
MPPs and hot spot points. Merits and demerits of the PV array reconfigurations are
introduced in Table 4.
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Table 4 Merits and demerits of the PV array reconfiguration

Topology Merits Demerits

Reconfiguration of PV array • Mitigates the PS effects
• Significant increase in the
output power to 45% under
PSCs

• High efficiency
• Shaded PV modules are
reconnected in the best
possible position

• More complex due to more
switching elements are
needed

• High cost
• Unsuitable to some PSCs

3 MPPT of Partial Shading PV Arrays

As discussed in the introduction section, conventional MPPT techniques are not
accurate and efficient to deal with the PS problemwhere it cannot track the GP under
PSC, whereas heuristic or soft computing techniques can track the GP and deal
with the PS problem efficiently. They can track the GP without falling or trapping
in LPs with high tracking speed, high convergence speed, less response time and
high efficiency [4]. Therefore, this chapter concentrates on the modern and efficient
MPPT techniques that can track the GP instead of LP and handle the PS problem.
These modern and efficient MPPT techniques are classified into heuristic and hybrid
MPPT techniques as follow:

3.1 Heuristic MPPT Techniques

3.1.1 Particle Swarm Optimization Technique

The particle swarm optimization (PSO) technique is considered as one of the most
efficient heuristic techniques. It can track the GP accurately with low oscillation
around the steady state. The GP tracking depends on the particle’s velocity and
position, which are updated to track the GP instead of LPs by sending the duty cycle
one by one to the DC–DC boost converter [70, 71]. Each particle in the swarm has
mainly two variable parameters, which are the position vector xki and the velocity
vector vki . The new position can be estimated as follows [71]:

xk+1
i = xki + vk+1

i (1)

The new position of the particle is determined through calculating the velocity
using current position xki , particle velocity v

k
i and global best positionGbest as follows:

vk+1
i = ωvk

i + c1r1
(
Pk
best i − xki

) + c2r2
(
Gk

best − xki
)

(2)
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where ω is the inertia weight that determines the research area. It can be set to
constant value (0.5) or variable to accelerate the GP tracking [72]. c1 and c2 are the
acceleration coefficients, where c1 is self-confidence and c2 is swarm-confidence.
The range of c1 varies from 1.5 to 2 while the range of c2 varies from 2 to 2.5 [73].

Some authors [74–77] used the conventional PSO which is able to handle PSCs
and track the GP accurately, but they discovered that it is low during the steady-
state oscillations [72]. As a result, others [78, 79] have added some modifications
to it. Later, an improved or a deterministic PSO (DPSO) was proposed to improve
the tracking capability of the conventional PSO, where the random number in the
velocity equation is removed as follows [79]:

vk+1
i = ωvk

i + c1 ∗ Pbest i + c2 ∗ Gbest − (c1 + c2)x
k
i (3)

vk+1
i = ω vk

i + c1 ∗ Pbest i + c2 ∗ Gbest − c3x
k
i (4)

The PSO algorithm begins the search by sending initial duty cycles to the DC–DC
converter and the obtained PV voltage and current are used to compute the Pbest and
Gbest values as shown in the PSO flow chart in Fig. 8. The new duty cycles are
computed using the velocity and position equations, based on Eqs. (1) and (4).

3.1.2 Grey Wolf Optimization Technique

Grey wolf optimizer (GWO) is counted as one of the most modern heuristic opti-
mization technique that first introduced by [80] in 2014. This technique is inspired
from the lifestyle of the grey wolves in a purse, chasing, attacking, and hunting prey
in wildlife. Mostly, grey wolves like to live in a pack 5–10 on average. They have
a very strict social dominant hierarchy [80], where it has four levels of leadership.
Leaders which we call it alpha (α), and subleaders called beta (β) and so on which
it called leadership pyramids as shown in Fig. 9 [26, 80], where the dominance of
wolves increase from top to bottom [81]. The behaviour of grey wolves has been
mimicked in the optimization field with GWO. The leadership hierarchy of the grey
wolves is done by assuming the leaders; wolves called alpha (α), and subleaders
called beta (β), the lower rank called delta (δ) and lowest rank wolves called omega
(ω).

As mentioned above, grey wolves encircle prey during the hunt. In order to math-
ematically model encircling behaviour, the following equations are proposed [80]:

−→
E =

∣∣∣
−→
C · −→

D p(t) − −→
D (t)

∣∣∣ (5)

−→
D (t + 1) = −→

D p(t) − −→
A · −→

E (6)

where t is the current iteration,A andC are coefficient vectors where their values have
the ability to save balance between the exploration and exploitation in the searching
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Fig. 8 Flow chart of deterministic particle swarm optimization (DPSO)-based maximum power
point tracker (MPPT)
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Fig. 9 Leadership pyramids
with four levels of leadership
(α, β, δ and ω)

area, Dp is the position vector of the prey and D indicates the position vector of a
grey wolf. The two coefficient vectors A and C can be calculated as follow:

−→
A = 2−→a · −→r 1 − −→a (7)

C = 2 · −→r 2 (8)

where the coefficient a is decreasing linearly from 2 to 0 and r1 and r2 are random
vectors with value between 1 and 0.

The hunting technique of the grey wolves is done by circling the prey and the pack
should obey the orders of the alpha wolf (Dα) as a high priority and the beta wolves
(Dβ) and delta wolves (Dδ) as a lower priority orders. This leadership hierarchy can
be mimicked mathematically using the following equations:

−→
E α =

∣∣∣
−→
C 1 · −→

D α − −→
D

∣∣∣,
−→
E β =

∣∣∣
−→
C 2 · −→

D β − −→
D

∣∣∣, and
−→
E δ =

∣∣∣
−→
C 3 · −→

D δ − −→
D

∣∣∣

(9)
−→
D 1 = −→

D α − −→
A 1 · −→

E α,
−→
D 2 = −→

D β − −→
A 2 · −→

E β, and
−→
D 3 = −→

D δ − −→
A 3 · −→

E δ

(10)

−→
D (t + 1) =

−→
D 1 + −→

D 2 + −→
D 3

3
(11)

The exploration and the exploitation of the solution depend on the values of a
and A values; when |A| ≤ 1, the wolves tend to exploitation (converge to prey) and
when |A| ≥ 1, the wolves tend to exploration (diverge from the prey because it may
be one of the LPs).
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3.1.3 Flower Pollination Algorithm

Flower pollination algorithm (FPA) is a heuristic-based nature inspired that takes its
idea from flowers pollination process in plants. Pollination may be self-pollination
or cross-pollination. Self-pollination takes place when the same flower is pollinated
internally, whereas cross-pollination occurs when pollen moves from one flower to
another. The pollen may be transferred via wind and in this case, it is called abiotic
pollination while it may via insects and in this case, it is called biotic pollination.
The four steps to design FPA are as following [82, 83]:

Step 1: Global pollination appeared in biotic and cross-pollination, and pollen car-
rying pollinators fly and follow Lévy flights.
Step 2: Local pollination represented in a biotic and self-pollination.
Step 3: Flower constancy considers as an equivalent to a reproduction probability,
which is proportional to the similarity of two flowers involved.
Step 4: The local pollination and global pollination have been controlled and switched
via switch probability P ∈ [0, 1].

The above steps have to be converted into proper mathematical equations. For
example, at the global pollination step, the pollinators load the flower pollen gametes,
so the pollen can fly a long distance. Therefore, global pollination (Step 1) and flower
constancy (Step 3) can be mathematically modelled as [82, 83]:

xk+1
i = xki + γ L(λ)

(
g∗ − xki

)
(12)

where xti is the solution vector xi at iteration t and g is the best solution (duty cycle)
of boost converter duty cycle. c denotes a scaling factor that used for controlling
the step size. L(λ) represents the Lévy flights-based step size � that corresponds to
the strength of the pollination. Insects can fly a long distance with different distance
steps; this is drawn from a Lévy distribution [82, 83]:

L ≈ λ �(λ) sin
(

	λ
2

)

	

1

S1+λ
(S ≥ S0 > 0) (13)

where �(λ) represents gamma function.

3.2 Hybrid MPPT Techniques

Hybrid MPPT techniques is a combination of conventional/soft computing [84] or
soft computing/conventional [85, 86] or soft computing/soft computing [87–89] in
order to handle the PSCs and track the GP accurately and efficiently. Some soft
computing MPPT, especially those based on AI such as FLC [90, 91] and ANN
cannot handle the PSCs where they may fail to track the GP. Therefore, they are
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Table 5 Recent combined and hybrid MPPT techniques

References Variable
control

DC–DC
converter

Application Findings

[92] Duty cycle Boost Standalone FLC combined with
scanning and storing
algorithm has fast and
accurate convergence to the
GP, high efficiency, no
oscillations during transient
and steady-state conditions
compared to variable step
size IC, conventional PSO
and FLC-based HC in both
simulation and experimental
works

[86] VMPP Buck Standalone PV Hybrid ANN-IC can track
the GP under PSC
effectively and accurately
compared to P&O and
FLC-based HC where ANN
provides V ref to IC

[85] Duty cycle Buck-boost Standalone PV Hybrid ANN-P&O can
track the GP efficiently and
accurately compared to
P&O, Fibonacci search,
conventional PSO and DE.
ANN is used to predict the
GP region then P&O tracks
the GP

[89] Duty cycle Boost Standalone PV ANN-FLC where ANN is
trained once under several
PSCs to determine the GP
voltage with SP, BL and
TCT configurations. FLC
uses the GP voltage to send
the duty cycle for the boost
converter

[84] Duty cycle Buck Grid-connected Hybrid P&O-GA can catch
the GP in a shorter time
because the GA parameters
(population size and number
of iterations) are decreased

(continued)
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Table 5 (continued)

References Variable
control

DC–DC
converter

Application Findings

[87] Duty cycle Boost Standalone PV Hybrid FLC-GA has better
performance and efficiency
compared to P&O where
GA optimizes FLC
membership functions and
rules

[88] – Not used Standalone PV GA optimized ANN-based
MPPT where GA is used to
determine the number of
neurons in multi-layer
perceptron neural network.
The PV system design
eliminates the DC–DC
converter and its losses

optimized and integrated with other techniques to improve the tracking efficiency
and convergence speed.

Based on the recent combined and hybridMPPT techniques introduced in Table 5,
soft computing-based AI can be used to optimize another soft computing-based AI,
for example, GA optimized FLC membership functions and rules as in [87], GA
optimized ANN as in [88] and finally, ANN optimized FLC performance where
ANN trained under several PSCs to determine the GP voltage and FLC using the
GP voltage to send the duty cycle to the boost converter [89]. On the other hand,
conventional P&O is embedded inside the soft computing GA to increase the GA’s
effectiveness in tracking theGP in a shorter time through reducing theGAparameters
[84]. The conventional MPPT techniques are not accurate and stuck at the first peak
regardless of whether it is LP or GP. Therefore, soft computing can be used to
optimize a conventional one such as ANN-IC where ANN provide V ref to IC [86]
and ANN-P&O where ANN is used to predict the GP region while P&O tracks the
GP [85].

4 Conclusions

Partial shading reduces the output power generated from the PV system. Also, ther-
mal destruction of shaded PVmodules may be occurred due to hot spot points. Under
PSC, multiple peaks, one GP and many other LPs are generated in the P–V curve
due to using bypass diodes for protecting the shaded PV modules. PV system design
topologies participate mainly in alleviating the partial shading effects and so extract-
ing the global maximum power available from the PSPV system with the helping of
modern and efficient heuristic MPPT techniques such as PSO, GWO and FPA. The
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PV system design topologies consist of the bypass and blocking diodes, PV system
architectures, PV array configuration and PV array reconfiguration. Each kind of PV
system design topologies has its own merits and demerits. For PV system configura-
tion, TCT has the superior performance compared to other configurations in terms of
maximum power, fill factor and efficiency. TCT and BL configurations increase the
maximum power by 2.3 and 3.8%, respectively, compared with the SP configuration.
For PV system architectures, interleaved DC–DC converter may represent the best
solution not only in mitigating the partial shading effects but also in extracting the
global maximum power available under PSC. On the other hand, heuristic MPPT
techniques are the most efficient MPPT techniques in tracking the GP instead of LP
under PSC. They can track the GP without trapping in LPs with high tracking and
convergence speed and high efficiency.
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Global Maximum Power Point
Tracking-Based Computational
Intelligence Techniques

Doaa Mohamed Atia

Abstract The photovoltaic (PV) systems are gaining popularity for both stand-alone
and grid-connected applications. These systems offer benefits of being static, mod-
ular, environmental friendly, and converts light from the sun, which is a perennial
source of clean and green energy. The energy conversion in the PV system is although
instantaneous, yet less efficient because of optical and electrical losses. The optical
loss caused by partial shading reduces PV system output greatly, if not properly
mitigated. The reduced efficiency of shaded PV arrays is a significant obstacle in
the rapid growth of solar power systems. The shading mitigation techniques ensure
global peak operation of PV plant under undesirable shading condition. Multitudes
of such mitigation techniques are available in the literature, though each one of
them exhibits some vulnerability. The maximum power point tracking-based com-
putational intelligence techniques that properly detect the global MPP are stated
and discussed. Artificial neural networks (ANN), fuzzy logic control (FLC), and
different types of meta-heuristic algorithm have been used such as particle swarm
optimization (PSO), ant colony optimization (ACO), artificial bee colony optimiza-
tion (ABC), genetic algorithm optimization (GA), differential evolution optimization
(DE), cuckoo optimization (CS), firefly optimization (FA), grey wolf optimization
(GWO), and bat optimization (BA). This chapter presents the proposed approaches
in each method and provides a brief discussion of their characteristics. This compre-
hensive review of shading mitigation techniques would certainly help the researcher
to select appropriate mitigation techniques for a given PV application.

1 Introduction

There are several drawbacks of the first three categories for shading mitigation tech-
niques which are high cost, more passive components are used and complexity of
control unit finally high switching loss compared to the fourth categories based on
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global maximum power point tracking-based computational intelligence techniques.
The PV system configuration is given in Fig. 1. Under uniform conditions, there is a
singleMPP in P–V characteristics, so it is simple to track theMPP. On the other hand,
when some PV modules or cells receive different values of solar irradiance in the
case of partial shading, P–V curve has multiple peaks. Thus, the MPPT algorithm
should have the ability to find global MPP from the multiple localized maximum
power peaks. There are several MPPT techniques which proved their efficiency in
tracking global MPP and give the best performance for all operating conditions.
Theoretically, the ideal MPPT technique for PV system should have:

1. The ability to accurately track the global MPP under partial shading conditions.
2. The ability to respond to rapid climatic condition changing.
3. The system independency and does not rely on the configuration of the PV arrays.
4. The system robustness under climatic disturbances and PV panel parameter vari-

ations.
5. The simplicity to implement with low computational complexity and low system

cost.

Global optimization techniques such as computational intelligence (CI) algo-
rithms are useful for solving real-life nonlinear problems, as compared to simple
mathematical methods. Swarm algorithm (particle swarm optimization, ant colony
algorithm, and artificial bee colony), differential evolution (genetic algorithmand dif-
ferential evolution), and nature-inspired algorithm (firefly algorithm, cuckoo search,
bat algorithm, and grey wolf algorithm) are given in Fig. 2, in addition to artifi-
cial intelligent techniques (neural networks, fuzzy logic). In the following sections,
various CI-based MPPTs are discussed in details [1–5].
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Fig. 1 MPPT control structure
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Fig. 2 ANN configuration to estimate the MPP of the shaded PV array [1]

2 Artificial Intelligent Techniques

2.1 Artificial Neural Networks

Artificial neural network (ANN) can be used to predict the MPP of PV panels under
normal and up-normal operating conditions [6]. ANN consists of three layers which
are an input layer, a hidden layer, and anoutput layer, shown inFig. 2. Solar irradiance,
air temperature, wind velocity, open-circuit voltage, terminal voltage of PV array,
PV output current, voltage derivative, power derivative, and incremental conductance
(dV /dI) may be taken as inputs. The sun’s position is also used as another input to
consider the shading effect. The system is first trained with a set of input and output
data. During the training process, the weights are determined by training to correctly
map input data to the desired output. Minimizing the error between the network
output power and the desired output power level is the main object of the training
process. Once the network is trained, then the network is expected to estimate the
maximum output power of a PV array for any shading condition. It is assumed that
shading due to moving objects such as clouds has a uniform effect on the PV array,
and hence, it uses only the sun’s position to consider the effect of partial shading [6].

Type of neural network, training parameters (it may be solar radiation, air temper-
ature, wind speed, open-circuit voltage, short-circuit current, and maximum power
point), number of training data, and model for simulating training dataset are the
parameters that can affect neural network operation in MPPT. Neural network has
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several advantages which are fast tracking speed, small/no oscillation at the stable
state and fast for rapid irradiance change. While disadvantages of the neural net-
work are tracking accuracy influenced by PV array model, training data required are
generated from simulated models.

2.2 Fuzzy Logic Control

Fuzzy logic control (FLC) consists of three stages: fuzzification, inference mech-
anism, rule base, and defuzzification as presented in Fig. 3. Recently, several
researchers have used the fuzzy logic control (FLC) approach to improve the per-
formance of the MPPT controller under PSCs. Fuzzy logic is used to improve the
performance of P&O technique and hill climbing method [7, 8]. Optimized FLC
using the genetic algorithm (GA) approach, which has been successfully tested under
PSCs, is done. Also, FLC with ANN is employed to track the GMPP in [9].

In this method, irradiance level and cell temperatures are the main inputs to train
theANNprocess to determine theMPP.However, this information cannot be acquired
in some shading conditions. The fuzzy logic MPPT method produces faster tracking
response than the conventional MPPT method to achieve the MPP under uniform
solar irradiance.When the PV array experiences shaded condition, it fails to track the
global peak (GP). MPPT based on FLC with initial voltage tracking function (IVTF)
which is able to track GP under shaded condition. IVTF is used to estimate the new
and resettable initial voltage. The PV array operates at the calculated initial voltage
for tracking the GP. This technique is efficient for tracking the GP with increased
efficiency [10].

Parameters affecting FLC performance are input/output scaling factors, member-
ship functions: range/shape, and type of input/output. Advantages of fuzzy logic
control are fast tracking speed, good dynamic performance and small oscillation at

Inputs

Rule Base

DefuzzificationInferenceFuzzification
Outputs

Fig. 3 Block diagram of FLC-based MPPT
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stable state, and easy to combine with the advanced optimization algorithm. Dis-
advantages of fuzzy logic control are represented in fuzzy rules which affect the
system performance, and the system performance depends on the selection of fuzzy
parameters.

3 Meta-Heuristic Algorithms

Global optimization techniques such as computational intelligence (CI) algorithms
are useful for solving real-life nonlinear problems, as compared to simple mathemat-
ical methods. Swarm algorithm (particle swarm optimization, ant colony algorithm,
and artificial bee colony), differential evolution (genetic algorithm and differential
evolution) and nature-inspired algorithm (firefly algorithm, cuckoo search, bat algo-
rithm, and grey wolf algorithm) are given in Fig. 4.
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Fig. 4 Classification of meta-heuristic MPPT-based algorithms
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3.1 Swarm Algorithm

3.1.1 Particle Swarm Optimization-Based MPPT

Particle swarm optimization (PSO) is one of the meta-heuristic search tools that
receive considerable attention in engineering applications. PSO was first introduced
in 1995 by Kennedy and Ebrahat; this method is inspired by the natural behavior
of birds flocking [11–13]. This theory basically explores a specific area called the
solution space, where each location has a possibility degree for the solution of prob-
lems. The PSO moves each particle throughout the solution space to determine the
optimum solution according to the individual and neighboring particle experiences
of the PSO during optimization. Therefore, particles involved in optimization use the
memory of the particles tomodify the particle fitness by following the behavior of the
successful particles in the swarm. The PSO procedure starts with a random particle
(initialization), continues by searching for optimal solutions within the past itera-
tions (movement), and then evaluating the particle quality according to the fitness
function (evaluation) [14]. Figure 5 shows the flowchart of PSO-basedMPPT. At the
beginning, the number of duty cycles has been randomly nominated. Then, each one
is applied to the PV array. The system current and voltage are measured in order to
estimate PV power. Such power represents the fitness function of particle i. In the
next step, the comparison between new fitness value and power corresponding to pbest
is stored in history. In case of the new estimated power is greater than the old one,
it is selected as the best fitness value. After evaluating all particles, old velocity and
position for each particle can be updated. When the stopping criterion is achieved,
PSO-based tracker stopped and gives optimal duty cycle which corresponds to global
power [15–20].

The basic PSO algorithm that defines the next position of the candidate solution
is as follows [21]:

V k+1
i = w × V k

i + r1 × c1 × (
Pbi − Xk

i

) + r2 × c2 × (
Gb − Xk

i

)
(1)

Xk+1
i = Xk

i + V k
i (2)

where i represents the optimization vector variable, k is the number of iterations,
Vk

i and Xk
i are the respective velocity and position of the ith variable within k itera-

tions, w is the inertia weight factor, c1 is the cognitive coefficient of the individual
particles, c2 is the social coefficient of all the particles, and r1 and r2 are the ran-
dom selected variables in the range [0, 1]. These random parameters mainly aim to
maintain stochastic movement within the iterations. To maintain the search space
in a certain area, the velocity values are set to the range of [0, Vmax]. In PSO, the
parameters w, c1, and c2 are highly mutable.

The best self-experienced location (Pbi), which records the best position experi-
enced by the ith particle up to the current iteration, is updated once Eq. 1 is satisfied.
In addition, the variable (Gb) records the Gb experienced location met by all con-
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tributed particles throughout the past iterations and is compared with the Pbi in each
iteration. The update condition of Gb and Pbi is presented in Eqs. 4 and 5. These
equations indicate thatGb is only recorded as Pbi if the conditions below are satisfied
[21].

Pbi = Xk
i if F

(
Xk
i

) ≥ F(Pi ) (3)

Gb = Pbi if F(PM) ≥ F(Gb) (4)

Equation 5 shows the location matrix of the particles as a solution to the MPPT
problem in the D dimensional search space [21].

Xk
i = [

Xk
1 · Xk

2 · Xk
3, . . . , X

k
i , . . . , X

k
(N−1) · Xk

N

]
(5)

whereXk
i is the location of the ith particle at the kth iteration. Practically, the generated

power fluctuates because of variations in the insolation levels and partial shading
degrees. Therefore, the algorithm should be initialized when Eq. 6 is satisfied. If this
step is neglected, the actual values of the acquired Pbi and Gb values should not be
considered [21].

∣∣∣∣
F(Xi+1) − F(Xi )

F(Xi )

∣∣∣∣ > �P (6)

Parameters affecting PSO performance are acceleration coefficients (the velocity
and the position), inertia weight, population size, andmaximumnumber of iterations.
Advantages of PSO are global tracking technique, low computational complexity,
and easy to combine with the basic algorithm. Disadvantages of PSO are standard
PSO-basedMPPTs have slow tracking speedwhen applying to large-scale PV arrays,
sensitive to the control parameters.

3.1.2 Ant Colony Algorithm

Ant colony optimization (ACO) is ameta-heuristic algorithm used for global solution
search in a stochastic problem. The algorithm was first introduced by Dorigo and
Gambardella in 1997 based on the foraging behavior of actual ants to find the best
path toward food [22]. Shen et al. [23] and Dorigo et al. [24] modified the algorithm
and presented it in the form of an optimization method. Basically, ACO mimics the
social behavior of ants searching for a food source. In general, the ACO trail will
be selected and updated if it represents a good problem solution [25]. A brief and
simplified description of ACO is presented step by step in Fig. 6. In the ACO-based
MPPT technique, each location represents the voltage value of the PV array. The
objective function is the output power of the PV array, and the fitness of each ant is
evaluated according to its voltage value.
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ACO has recently been used to solve problems in different renewable energy
sectors [26–28]. ACO-based MPPT was tested at different four predefined shading
conditions and showed satisfactory results under these conditions. The proposed
method was fast and has a low system cost. It has the ability to track global MPP by
using a single current sensor at the output of the PV system. The convergence speed
of ACO is independent of the initial conditions. In addition to the sole application
of ACO for the MPPT problem, some researchers used the advantages of the ACO
approach to design hybridized methods in which ACO is employed to optimize the
performance of other methods.

A new bio-inspired MPPT controller based on the ant colony optimization algo-
rithm with a new pheromone updating strategy (ACO NPU MPPT) that saves the
computation time and performs an excellent tracking capability with high accuracy,
zero oscillations, and high robustness. First, the different steps of the design of the
proposed ACONPU MPPT controller are developed. Then, several tests are performed
under standard conditions for the selection of the appropriate ACO NPU parame-
ters (number of ants, coefficients of evaporation, archive size, etc.). To evaluate the
performances of the obtained ACO NPUMPPT, in terms of its tracking speed, accu-
racy, stability, and robustness, tests are carried out under slow and rapid variations
of weather conditions (irradiance and temperature) and under different partial shad-
ing patterns. The solution archive stores a finite number of complete solutions to
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the problem which serve as a reference to build new solutions. Accordingly, the
following equations are used in ACOR [21]:

Gi (x) =
k∑

l=1

wl g
i
l (x) =

k∑

l=1

wl
1

σ i
l

√
2π

exp

(

−
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l

)2

2σ i2
l

)

(7)

where Gi(x) is the Gaussian Kernel for the ith dimension of the solution; gli(x) is the
lth sub-Gaussian function for the ith dimension of the solution; μi

l and σ i
l are the ith

dimensional mean value and the standard deviation for the ith solution, respectively.
The pheromone equation τ li given by [21]:
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The pheromone equation reflects the most relevant information for the construc-
tion of the objective function.

The ant colony optimization-based new pheromone update (ACONPU) is mainly
based on a new process for updating the pheromone during execution which is per-
formed by selecting the best solutions. A number of ants “m” of the best solutions
in the archive are selected, where a pheromone initialization for each solution is
performed as follows:

Calculate the distances Di between each xi solution among the selected solutions
(i = 1, …, m) and the best solution xbest in the archive.

Di = |xi − xbest| (9)

where Di corresponds to the Euclidean distance, 1 < i < m. Compute the Gaussian
ϕi by the equation below:

ϕi = e
−D2

i
2t (10)

where t is the standard deviation of the Gaussian (usually t = 0.05). The pheromone’s
value τ i is calculated as follows:

τi = ϕi∑m
j=1 ϕ j

(11)

The movement of ants is conditioned by pheromone values τ i previously calcu-
lated for each solution of the archive. We must firstly select a reference point which
is the solution to which an ant is attracted. The probability that an ant is attracted to
the kth solution is τ k . Once the reference point xk(t − 1) is selected, the position of
the ith ant is obtained by the equation:
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xi = xk(t − 1) + dx (12)

where xi is the solution vector of the kth ant at iteration t; xk(t − 1) is the selected best
solution in the solution archive (reference point); dx is a variable generated randomly
[−α, α] to determine the length of the jump. For each value of xi, the corresponding
value di is calculated using the relationship:

di (t) = 1 − xi (t)/xref (13)

At the end of the second stage of the algorithm, m new solutions are generated,
where only theK best solutions in the archive are selected among allm+K solutions.
Once the archive is reinitialized by the best solutions, we select the m best solutions
and update their pheromones with Eqs. 9–11. Therefore, the functional objective
function of the PV system is given by Eq. 14

Objective function = P = VPV × IPV(G, T ) (14)

whereVPV represents the panel voltage; IPV represents the panel current;T represents
the panel temperature; andG represents the panel irradiation. Calculate the distances
Di between each Vi solution among the selected solutions (i = 1, …,m) and the best
solution V best in the archive.

Di = |Vi − Vbest| (15)

Compute a Gaussian ϕi by the equation below:

ϕi = e
−D2

i
2t (16)

where t is the standard deviation of the Gaussian. The pheromone’s value i is com-
puted as follows:

τi = ϕi∑m
j=1 ϕ j

(17)

Then, a perturbation of the voltage is computed according to Eq. 10

Vi (t) = Vk(t − 1) + dx (18)

For each value of voltage Vi, the corresponding value of duty cycle di, which is
used to control the system, is computed as follows:

di (t) = 1 − Vi (t)/Vref (19)
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Parameters affecting ACO performance are the size of the archive, balance coef-
ficient, convergence speed constant, population size, and maximum number of itera-
tions. Advantages of ACO are high accuracy under partial shading, reduced cost with
proposed application structure and faster tracking speed than conventional PSO, and
DE MPPT. Disadvantages of ACO are one additional parameter to set compared to
DE and PSO.

3.1.3 Artificial Bee Colony

A novel artificial bee colony algorithm (ABC) is developed to overcome the con-
ventional methods’ drawback with simple and robust MPPT scheme uses very few
controlled parameters and the algorithm convergence criteria are not dependent on
initial conditions of the system. It is a swarm-based meta-heuristic algorithm capable
of solving multidimensional as well as multimodal optimization problems very eas-
ily. The artificial bees are divided into three classifications, i.e., employed, onlooker,
and scouts bees, as shown in Fig. 7 [29, 30]. The bee which currently searches the
food or exploits the food production source is called as an employed bee, a bee that
waits in the hive to make decisions to choose a food source is called as an onlooker,
and the scout bee is used to carry the random search for a new food source. All three
groups work together by communication and coordination to get the optimal solution
in lesser time. Here, the duty cycle is the food position and maximum power as the
food source of ABC algorithm. The ABC tracks MPP with good accuracy and effi-
ciency under partial shading conditions. Parameters affecting ABC performance are
a number of trials, population size, and maximum number of iterations. Advantages
of ABC are high accuracy under various shadings, less parameters to set than PSO,
DE and ACO, low complexity, easy to use tuning parameters, and independent of
the initial conditions. Disadvantages of ABC are slow tracking speed.

3.2 Evolutionary Algorithm

3.2.1 Genetic Algorithm

Genetic algorithm (GA) is ameta-heuristic optimizationmethod for finding solutions
based on evolution of biological behavior. This method was introduced by Holland
in 1975 through the principle of survival of the fittest [31]. In general, GAmodels the
candidates’ solutions, known as chromosomes, in the problem search space through
fixed-length strings. The evolution process helps the best fitness chromosome to
survive andmate fromonegeneration to the next. In otherwords, theGA is an iterative
method through which a population of chromosomes evolves and improves through
generations affected by GA operators. In each generation, parents are selected from
the existing population and used to generate children in the next generation. The
objective function is the main evaluative factor for improving population fitness over
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Fig. 7 Basic flowchart of artificial bee colony algorithm [30]

Fig. 8 Life cycle of population, recombination, and mutation

time. The procedure and life cycle of the population are shown in Fig. 8, and the GA
steps are initialization, selection, crossover, and mutation. The flowchart of the GA
algorithm is shown in Fig. 9.

GA was used to find the global maximum power point of the PV system under
a certain simplified PSC. MPPT control was developed based on the GA approach,
and the method was verified through two different cases of partial shading patterns.
However, the verification part is limited to simulation validations, and the feasibility
of the method under an actual practical environment has not been presented [32, 33].

GA method has been mostly used in hybrid methods to improve the performance
of other MPPT techniques. Integration of P&O method and GA leads to reduce the
population size and decrease the number of iterations. The hybrid method adopted a
faster convergence, as well as a more accurate output for PV system under various
partial shading patterns when comparing with a normal GA approach [34]. Another
form of hybrid optimization method is carried out by applying GA to tune the param-
eters of a fuzzy logic controller used in MPP tracking under PSC. The performance
of the fuzzy logic control improved as parameters, such as rule base and membership
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functions, are tuned to their optimized values by using GA techniques. GA method
was finally used as a tool to train the ANN system. In this approach, GA is used
to define the neuron numbers in a multilayer perceptron neural control [35]. If the
chromosomes are coded in continuous numbers, and α is considered as crossover
rate, the offspring will be crossed over as below [21]:

offspring1 = α × parents1 + (1 − α) × parents2 (20)

offspring1 = (1 − α) × parents1 + α × parents2

This operator randomly manipulates the chromosome with a specific rate called
mutation rate (β). For the continuous coded chromosomes, the mutation follows the
statement below [21]:

offspring = ±β offspring + offspring (21)

In the application of GA-based MPPT system, the initial parent population is
shown as:

X = [parent1, parents2, parents3, . . . , parentsN ] (22)



Global Maximum Power Point Tracking-Based … 145

where n is the population size, and each parent represents initial voltage values
in which the algorithm starts the evaluation process. The PV output power is the
objective function f (xi). The fitness values of each position are estimated by the
objective function and are used to evolve the population and improve the population
fitness through the generations. In MPPT, GA should be reinitialized due to sudden
changes in operating parameters such as load, solar radiation, or partial shading
patterns. Therefore, the following conditions reinitialize GA-based MPPT once they
have been satisfied [21]:

|V (k + 1) − V | < �V (23)

∣∣∣
∣
P(k + 1) − P(k)

P(k)

∣∣∣
∣ > �P (24)

Parameters affecting performance are encoding format, crossover probability,
mutation probability, population size, and maximum number of iterations. Advan-
tages of GA are global tracking technique, uniform implementation scheme, and
low computational complexity. Disadvantages of GA are slow tracking speed due to
the series format for applying each particle in the population and initial conditions
dependent.

3.2.2 Differential Evolution Algorithm

The differential evolutionary (DE) algorithm has the concept of GA, and Storn and
Price were first introduced DE [36, 37]. Due to simplicity, DE is one of the most
powerful population-based optimizations. In this algorithm, existing particles with
the best fitness records remain in the population, while the others are replaced by new
particles. DE is suitable for problems with many local optimum solutions [38–40].
The algorithm consists of four steps which are initialization, mutation, crossover, and
selection. Renewable energy systems were recently used the DE algorithm to solve
the global MPP tracing in PSC problem. In the DE-based MPP tracking method,
the duty cycle of DC–DC converter is the target vector. However, the method is
based on a static objective function in which the P–V curve must be predetermined,
whichmakes themethod impractical for real-timeMPPTapplication [38]. The search
time was decreased by avoiding the additional measurement from the output of the
converter setup. Figure 10 gives the flowchart of DE algorithm [39–42].

The algorithm must be initialized by assigning the initial locations to the tar-
get vector. The parameters are randomly selected to be recombined to enhance the
stochastic nature of the DE and cover the entire search space. Assuming the NP as
the total population size, Eq. 25 describes Xi,G as the target vector of the ith particle
in the Gth iteration [21].

x f,G; i ∈ (1, 2, 3, . . . ,NP) (25)
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Fig. 10 Flowchart of DE method

The vi, G which is the mutant vector of the ith particle in iteration G, is formed
by mutating each particle of the target vector by using the equation below [21]:

v f,G+1 = x f,G + k · (
xr1,G − x f,G

) + F · (
xr2,G − xr3,G

)
(26)

where r1, r2, and r3 are the random numbers in the range of (1, 2, …, NP), and NP
denotes the number of particles. K and F are the scaling and combination factors,
respectively, which are ranged in [0, 2]. The DE parameters, like other meta-heuristic
methods, affect the performance of the system significantly. Parameter selection is
an important responsibility for a designer, especially when the engineering problem
is significantly critical, such as MPP tracking from the nonlinear output of partially
shaded PV system. The most common parameter selection method is the rule of
thumb by Storn. In the DE-based MPPT, the output power will be evaluated when
the crossover sections are completed and the trial components of trial vectors are
generated [21].

u f,G+1 =
{

v f,G+1 if
(
rnd j ≤ CR

)
or j = rn f

x f,G if
(
rnd j > CR

)
or j �= rn f

(27)

x f,G+1 =
{
u f,G if f

(
u f,G

) ≥ f
(
x f,G

)

x f,G if f
(
u f,G

)
< f

(
x f,G

) (28)

Parameters affecting performance are scaling factor, crossover rate, population
size, and maximum number of iterations. Advantages of DE are global tracking
technique and simple implementation. Disadvantages of DE are sensitive to the con-
trol parameters of the algorithm.
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3.3 Nature-Inspired Algorithm

3.3.1 Cuckoo Search

The cuckoo search (CS)method is based on the reproduction strategy of some species
of cuckoo bird which are reported to lay their eggs in the nests of other birds. This
parasitic reproduction approach is the basis of the CS optimization method. In this
approach, seeking the right host nest is a key step. This is similar to searching for
food, which is a random process and can be modeled using mathematical functions.
One of the common methods for modeling animal’s food-seeking trajectory is the
Lévy flight model. The operational behavior of the CS technique is similar to the
HC and P&O methods. Unlike these methods, however, the step size of the CS
is based on Lévy flight and is a population-based algorithm. Due to Lévy flight,
compared with standard PSO and DE techniques, the CS method has more efficient
randomization and faster convergence [43, 44]. Figure 11 shows the flowchart for
searching mechanism by CS-based tracker. At the beginning, the number of duty
cycles is randomly nominated. Then, each one is applied to PV. The system current
and voltage are measured in order to estimate PV power. Such power represents
the fitness value. The duty cycle related to best fitness function has been selected
as current best nest (dbest). Next, Lévy flight is applied in order to generate new
nests. New finesses’ values are tested through the PV system. Afterward, the worst
nest is randomly destroyed, and this process simulates the behavior of the host bird
discovering the cuckoo’s eggs and destroying them.

The PV power ismeasured and the current best nest is selected.When the stopping
criterion is achieved, CS-based tracker stopped and gives optimal duty cycle which
corresponds to global power.

The Lévy flight model represents a random walk where step sizes are defined
using Lévy distribution, which is determined by the following equation [21]:

Lévy(λ) ≈ u = 1−λ where (1 < λ < 3) (29)

For each iteration, the Lévy flight is performed to determine the new solution
using the following expression [21]:

xt+1
i = xti + a ⊕ Lévy(λ) (30)

where i is the number of samples (or eggs), t is the iteration number, the product ⊕
indicates entry-wise multiplication, and α is the step size which needs to be tuned
properly according to the constraints of the optimization problem. The value of α is
often defined using the initial step α0, and the difference between two samples (xtj
and xti ), as shown by the following equation [21]:

α = α0 + (
xtj − xti

)
(31)
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Fig. 11 Flowchart for searching mechanism by CS-based tracker

Parameters affecting performance are initial step change, fraction of worse nests,
parameters forLévydistribution, population size, andmaximumnumber of iterations.
Advantages of CS are easy to implement, fast tracking speed, and easy to combine
with other swarm-based algorithms. Disadvantages of CS are easy to fall into local
optima on the boundarywhen the parameters are inappropriately set low convergence
rate.

3.3.2 Grey Wolf Algorithm

Grey wolf optimization (GWO) is another population-based optimization technique,
based on the hierarchical leadership and the hunting behavior of the grey wolf and
recently presented in [45].When seeking prey, grey wolves can be classified into four
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types based on the fitness evaluation of each type where the first type possesses the
highest fitness and the fourth is the worst. Grey wolves have three main steps in their
hunting behavior: (a) searching, tracking, and approaching prey; (b) pursuing and
encircling prey; and (c) attacking prey. Circling behavior by the wolves is a key step
in the hunting procedure and for the purpose of designing the GWO algorithm. The
GWO method is applied to MPPT where the number of participating grey wolves
represents the converter’s duty cycles and the MPP is prey being hunted [46].

Circling behavior of the wolves is a key step in the hunting procedure and for the
purpose of designing GWO algorithm is mathematically represented by Eq. 33 [21]:

−→
D = ∣∣
c · 
xp(t) − 
x(t)

∣∣ (32)


x(t+1) = 
xp(t)−→A · −→
D (33)

where t is the number of the iteration, Xp and X are the positions vectors of the prey
and the grey wolf, respectively; and A, C andD are the coefficient vectors calculated
by Eq. 32–35 [21]:

−→
A = 2 · 
a · 
r1 − 
a (34)


c = 2 · 
r2 (35)

where components of a are linearly decreased from 2 to 0 across iterations and r1, r2
are random vectors in [0, 1]. GWO optimization method is applied to MPPT where
the number of participating greywolves represents the converter’s duty cycles and the
MPP is prey being hunted. For number of grey wolves, i.e., duty ratios, the controller
measures V pv and Ipv through sensors and computes the output power. The flowchart
of GWO-based MPPT algorithm is shown in Fig. 12 [47].

Parameters affecting performance are exploration and exploitation factor, pop-
ulation size, and maximum number of iterations. Advantages of GWO are easy to
implement, few parameters to set, and good tracking accuracy. Disadvantages of
GWO are low tracking speed.

3.3.3 Firefly Algorithm

The FA is a population-based optimization method and similar to PSO. The FA is
inspired by illuminated bugs and is mathematically presented in [48, 49]. FA has
less parameters to be tuned and the particles in FA aggregate more closely around
each optimum, without rapid fluctuation. Flashing light is a key component of the
population-based behavior of fireflies and is used to attract mating partners and
potential prey, as well as a mechanism for protective warning. As such, brightness
is important and used to determine the new position for particles in the search space
(Fig. 13) [2, 21, 48–50].
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For example, if the firefly p has lower brightness than firefly q, the new position
for firefly p is determined by Seyedmahmoudiana et al. [21]:

Xt+1
p = Xt

p + β(r)
(
X p − Xq

) + (rand − 0.5) (36)

where Xp and Xq represent the positions of two fireflies, r is the distance between
these two fireflies, β is the level of attractiveness, and α is a random movement
factor and is a constant value in the range of [0, 1]. It is important to mention that a
large value of α makes it possible to search for the solution through a large search
space, whereas a smaller value of α tends to facilitate local search. The degree of
attractiveness (β) can be calculated using the following equation [21]:

β(r) = β0e
−γ (X pq)

n

, n ≥ 1 (37)

where γ is the absorption coefficient and controls the light intensity, and β0 is initial
attractiveness.

For a population of fireflies, i.e., duty ratios, the digital controller measures V pv

and Ipv and computes the output PV power. The steps of FA algorithm toward MPPT
are described below [2]:

In the first step (parameter setting), fix the constants of the FA and the termination
criterion. In this algorithm, the position of the firefly is taken as a duty cycled of
the DC–DC converter. The brightness of each firefly is taken as generated power
Ppv of the PV system, corresponding to the position of this firefly. In the second
step (initialization of fireflies), the fireflies are positioned in the allowable solution
space between dmin and dmax where dmin and dmax represent the minimum and max-
imum values of the duty ratio of the DC–DC converter. In the third step (brightness
evaluation), the DC–DC converter is operated corresponding to the position of each
firefly (i.e., duty ratio) sequentially. For each duty ratio, the corresponding PV output
power, Ppv, is taken as the brightness or light intensity of the respective firefly. This
step is repeated for the position of all fireflies in the population. The fourth step
(update the position of fireflies), the firefly with maximum brightness remains in its
position and the remaining fireflies update their position. In the fifth step (program
termination), terminate the program if the termination criterion is reached; else go to
step 3. The optimization algorithm is terminated once the displacement of all fireflies
in consecutive steps reaches a set minimum value. Once the program is terminated,
the DC–DC converter operates at the optimum duty cycle corresponding to GMPP.
In the final step (reinitiate FA), if the solar insolation changes which is detected by
the digital controller by sensing the change in the power output [2].

Parameters affecting performance are initial attractiveness, absorption coeffi-
cient, randommovement factor, population size, andmaximum number of iterations.
Advantages of FA are better performance, fast tracking speed, and not sensitive to
the initial conditions. Disadvantages of FA are easy to fall into local optima when
the parameters are inappropriately set.
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Fig. 13 Behavior of fireflies

3.3.4 Bat Algorithm

Bat algorithm (BA) is a population-based optimization algorithm inspired by the
echolocation features of micro-bats in locating their foods. Small bats (micro-bats)
feed primarily on insectswhich detect using echolocation. The direction and intensity
of the return signal enable them to locate potential prey in direction and also in
distance. At first, the bat overflies the search space, while emitting a set of ultrasonic
pulses of certain amplitude (intensity) and a rate (density). Between the pulse trains, it
receives the feedback signals (its own signal and eventually the signals fromother bats
in the swarm) by echolocation and interprets them. If the signals received in return
have a low intensity and a strong rate, then it is very likely that prey is detected and the
bat should head toward it. As the bat approaches the prey, it gradually intensifies the
amount of pulses (the ultrasound rate) and, at the same time, progressively decreases
the intensity of these pulses. Bat algorithm is developed then by idealizing some of
the echolocation characteristics of micro-bats [51].

Bat algorithm maintains a swarm of N micro-bats, where each micro-bats flies
randomly with a velocity vi at position xi, with a varying loudness Ai and pulse
emission rate ri ∈ [0, 1] I depending on the proximity of their target. During the opti-
mization task, every bat is randomly assigned a frequency which is drawn uniformly
from [f min, f max]. Then, the velocity vi and the position xi of each bat at time step t
are defined and updated with:

fi = fmin + (
fmax − fmin

)
β (38)

vt+1
i = vt

i + (
xti − x0

)
fi (39)

xt+1
i = xti + vt+1

i (40)
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where β ∈ [0, 1] is a vector randomly drawn from a uniform distribution. xt is the
current global best location (solution) which is achieved after comparing all the
solutions among all the N bats at each iteration t. If a random number is greater
than the pulse emission rti , then the exploitation stage is selected and the position is
replaced by the solution generated by the local search. As a result, a new solution is
drawn locally by using a random walk around the current best solution:

xnew = x0+ ∈ At (41)

where ∈ is a random number which can be drawn from a uniform distribution in
[−1, 1] or Gaussian distribution, while A<= At

i is the average loudness of all the
bats at this time step. If a random number is smaller than the loudness At

i and the
new solution improve the fitness value, this means that the bat is moving toward the
prey (the optimal solution). Then, the new solution is accepted and its loudness and
emission rates are updated to control the exploration and exploitation. It is suggested
that loudness decreases from positive value A0

i to Amin = 0 whereas the pulse rate of
pulse emission increases from 0 to Ri

At+1
i = αAt

i (42)

r t+1
i = Ri (1 − exp(−γ t)) (43)

∣
∣xki − xkj

∣
∣ ≤ �x i, j = 1, 2, 3 . . . , (i �= j) (44)

|PPV new − PPV last|
PPV last

> �p (45)

where α is a constant in the range of [0,1], and γ is a positive constant. In this work,
Ai0 and Ri are set to 1.

The bat algorithm is applied to the tracking of GMPP by the direct duty cycle
control method. Thus, the optimization variable is defined as the duty cycle of the
PWM signal. The complete flowchart of the proposed bat algorithm-based MPPT is
illustrated in Fig. 14.

Parameters affecting performance aremovement of virtual bats, velocity, weights,
loudness, and pulse emission. Advantages of BA are faster, more efficient, sustain-
able, and more reliable than conventional and other soft computing-based methods,
give the best solution in quick time. Disadvantages of BA are bat algorithm converges
very quickly at the early stage and then convergence rate slows down, there is no
mathematical analysis to link the parameters with convergence rates, and accuracy
may be limited if the number of function evaluations is not high.
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Fig. 14 Complete flowchart of the MPPT-based bat algorithm [51]
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4 Hybrid Methods for MPPT

A simple and efficient hybrid MPPT technique for PV systems under PSC was
developed with a combination of P&O or IC and artificial neural network [52]. This
approach was noted to be less costly with simple structure and fast response. In a dif-
ferent work, an FL-based P&O MPPT was studied using peak current control with
a variation of the reference current for better transient with the improved steady-
state performance [53]. The analysis showed an improved transient response of 15%
and the power loss reduction in the steady state. An ANN-Polar coordinated fuzzy
controller-basedMPPTcontrolwas applied for PVunder PSC [54]. TheFLwith polar
information controller utilizes the global MPP voltage as a reference voltage to pro-
duce the required control signal for the power converter, and the MPPT is estimated
through the ANN algorithm. Meanwhile, an ANN-based modified IC algorithm for
MPPT under PSC was simulated and implemented in hardware using FPGA [55].
The analysis revealed that the improved FL-P&O MPPT method is able to track the
real absolute MPP for PSC. FL and P&O-based MPPT for PV array under PSCs
were implemented in MATLAB/Simulink [56]. FL is adopted into the conventional
MPPT to enhance the overall PV system performance and for the optimization of the
solar PV array under PSC. This method has improved performance because it can
facilitate the PV array to reach the MPP faster and achieve a stable output power.
An MPPT algorithm based on a modified GA was also concentrated on tracking the
GMPP in PV array with PSC [57]. A P&O algorithm was integrated into the GA
function to create a single algorithm. The control part and theGMPPTalgorithmwere
implemented on a digital signal processor and tested on an experimental small-scale
PV system. The algorithm does not need some sort of preset up configuration and
can be directly applied to any type of PV characteristic with an unknown number of
local MPPs. The assessment of GA and conventional methods for MPPT of shaded
solar PV generators is carried out [58]. They concluded that IC and P&O algorithms
fail to achieve MPP of the PV if the PV panel is under PSC. To solve this problem,
GA algorithm was used and it successfully enabled the system to reach the global
MPP. Alternatively, an MPPT method for PV systems PSC was formulated where
a global MPP searching technique is obtained by linking IC and scanning approach
method which utilizes duty cycle sweep to track the global MPP when the PV array
is under PSC [59]. A hybrid MPPT technique based on P&O and PSO is indicated
to have excellent performance [60]. P&O was employed to assign the nearest local
maximum, whereas the PSO technique was used to search for the GMPP. MPPT of
PV systems under PSCs through a colony of flashing fireflies was verified to have
faster convergence, simple computational steps and low-cost implementation on the
microcontroller. The technique was studied for two dissimilar configurations of PV
arrays under PSCs and the tracking performance compared with conventional P&O
and PSO methods under identical conditions. PV system MPPT control based on
PSO-DE hybrid algorithm was tested under PSC. Compared with the PSO algorithm
and DE algorithm, the hybrid tracking algorithm requires a much shorter time to
reach the GMPP [61]. In another work [62], an ANN-based hybrid MPPT algorithm
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was proposed. The basic idea of the proposed MPPT method is to use the ANN clas-
sifier to recognize the region of the global peak voltage from the irradiance values
when irradiance sensors are available. Alternatively, the peak voltage is recognized
from the measured current values on each stair of the I–V curve. The obtained infor-
mation through ANN could be used to locally track the MPP using any conventional
tracking algorithm. The effectiveness of the proposed MPPT is well proved using
both simulations and experimental setup. The results are shown to have more PV
yield compared to other techniques and under various PSCs, and their method can
track the global MPP with fast tracking speed [21]. FLC-based GWO and PSO are
studied by Eltamaly et al. [63, 64].

5 Analytical Comparison

Published research in this field of MPPT indicates the difficulty of evaluating and
comparing the best MPPT approaches and techniques. In general, the final MPPT
technique is selected based on the application requirements and preferences. There-
fore, the knowledge about the nature of the application and the limitations is an
essential prerequisite. In addition, the test benches, applications, and environmental
conditions used to verify the performance of the designed MPPT techniques are not
similar. Therefore, a comparison among these methods should be fair. Compared
with the conventional MPPT techniques, the intelligent approaches commonly have
lower oscillation around MPPT and higher reliability for sudden changes in irradi-
ance levels. In addition, they mostly show better performance in the most significant
criteria. However, their behavior with regard to the main criteria, such as efficiency,
reliability under PSCs, convergence speed, system independence, and steady-state
oscillation, might be different. The performance of these techniques in accordance
with the accredited literature is discussed and presented in Fig. 15 and Table 1. It
is shown that the axis A, B, C, D, E, and F refer to periodic tuning and parame-
ter dependency, simplicity, efficiency, reliability under PSCs, system independency,
and convergence speed, respectively. According to the reviewed studies, the FLC and
ANN methods in their original forms are incapable of tracking the global maximum
points under PSCs. However, they obtain satisfactory results under normal condi-
tions. The most significant advantage of the ANN method is its independence from
detailed information of the PV system. However, its reliability is largely affected by
the training process, which makes the system exclusive for each PV system. There-
fore, the ANN method cannot operate for another PV system unless it undergoes a
new training process. This problem may also occur when the characteristics of the
array change due to aging or degradation.

The main advantages of FLC are its system independence and ease of implemen-
tation. However, the computational cost of the system for designing the fuzzification
rule base and defuzzification process increases. Compared with other AI-basedMPP
techniques, the FLC requires more perception and comprehension of the PV system
by the designer to design the different FLC parameters, such as rules and member-
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ship functions. Therefore, thismethod can be consideredmore systemdependent than
others. System independence speed and decision making based on approximate val-
ues make the fuzzy logic controller one of the most suitable techniques for complex
engineering challenges. Thus, this method can be considered one of the more reliable
options for finding theMPP in the nonlinear characteristics of PV systems under nor-
mal conditions and some PSC. However, this technique highly depends on designer
knowledge in the different steps of the algorithms. In addition, the method needs
extensive computation in the fuzzification, rule base, and defuzzification stages.

All the PSO-based methods are suitable to operate under PSC. The methods
are mainly related to their heuristic behavior for exploring the search space that
comprises multiple maximum power points. The main problems of the PSO method
are implementation complexity, poor dynamic response due to the interruption for
measurement process, long tracking process as a result of undefined initial points,
and significant dependency on the coefficient designs and initial conditions. Overall,
PSOhas a fast convergence speed, high sensitivity atmospheric change, lowhardware
implementation cost, and high efficiency with no oscillation around MPP.

ACO can also track the MPP under both normal and PSC. Unlike PSO, ACO is
not dependent on the design of the initial location of the particles. In addition, it
is capable of tracking MPP in a system with minimized sensors, which results in a
more cost-effective system. However, theoretically, this condition can be similar for
all the meta-heuristic approaches, such as PSO, DE, and GA. In general, ACO com-
prises three factors: the positive feedbackmechanism that increases the probability of
detecting optimal solutions in initial iterations, the distributed computation to ensure
that the algorithm is not involved in the local optimum, and the greedy search that
helps the algorithm find the optimal solution with higher convergence speed [65].
Overall, the most significant advantages of the ACO over other AI-based methods
are system independence, high convergence speed, and initial location independence
of particles. However, these advantages might increase the computational burden
because of complex calculations. In addition, due to the lack of research in this area,
the reliability and robustness of the technique under different PSCs have not been
experimentally verified.

The GA and DE techniques, which have almost similar concepts, can track the
global MPP under PSCs because of their ability to solve multi-objective problems.
Both algorithms are system independent, efficient, have no need for periodic tuning,
and have no oscillation around MPP. Moreover, the advantages of the DE algorithm
are simplicity because of the few required control parameters, fast convergence speed,
and initial location independence. However, experimental verifications for purely
using either of these methods under PSC conditions are lacking. Unlike the PSO and
ACO theories, the methods do not remember previous movements and locations that
the particles have experienced throughout the program. Therefore, the algorithm is
more likely to be stuck in the local optimum. The CSMPPT technique also has a very
fast convergence speed compared to other MPPT techniques, achieved using Lévy
flight during its operation. CS technique requires only a few parameters to be tuned;
however, it has fairly complex operation compared with other soft computing-based
MPPTmethods GWO and FA techniques. The convergence speed toward the GMPP
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for both algorithms is an improvement upon common AI techniques, and they have
less complex structure compared with CS algorithms. However, GWO or FA-based
MPPT unit results in output oscillation during the tracking period compared with CS
algorithms. Therefore, in the applications which are very sensitive to output power
fluctuations, CS technique is preferred [65, 66].

6 Conclusion

Many shadingmitigation techniques are developed over the years and gainedmomen-
tum in last two decades due to the recent emphasis on green technology. A compre-
hensive reviewof important shadingmitigation techniques as reported in the literature
is categorically brought out in this chapter. The major hurdles in the rapid growth of
the PV systems are the development of efficient power electronics topology to track
global maximum power point. It is established that efficient tracking against partial
shading condition enhances overall efficiency of the PV system. A wide range of
MPPT literature emphasizing the suitability of global MPPT techniques to mitigate
partial shading are therefore reviewed, categorized, and discussed. All important
methods are broadly classified and found to have variations in either implied algo-
rithm or in hardware architecture. Each method has its own merits and demerits, so
it is difficult to determine which one is suitable for a specific application.

References

1. Bidram A, Davoudi A, Balog R, Balog S (2012) Control and circuit techniques to mitigate
partial shading effects in photovoltaic array. IEEE J Photovoltaics 2(4):532–546

2. Sundareswaran K, Peddapati S, Palani S (2014) MPPT of PV systems under partial shaded
conditions through a colony of flashing fireflies. IEEE Trans Energy Convers 29(2):463–472

3. Bouilouta A, Mellit A, Kalogirou S (2013) New MPPT method for stand-alone photovoltaic
systems operating under partially shaded conditions. Energy 55:1172–1185

4. Danandeh M, Mousavi S (2018) Comparative and comprehensive review of maximum power
point tracking methods for PV cells. Renew Sustain Energy Rev 82:2743–2767

5. Jiang L, Srivatsan R, Maskell D (2018) Computational intelligence techniques for maximum
power point tracking in PV systems: a review. Renew Sustain Energy Rev 85:14–45

6. Hyok J, Yong J, Gu K, Hyung K,Won L, YuenW (2011) A real maximum power point tracking
method for mismatching compensation in PV array under partially shaded conditions. IEEE
Trans Power Electron 26:1001–1009

7. AlajmiB,AhmedKH,FinneyS,WilliamsB (2013)Amaximumpower point tracking technique
for partially shaded photovoltaic systems inmicrogrids. IEEETrans IndElectron 60:1596–1606

8. Ramaprabha R, Balaji M, Mathur B (2012) Maximum power point tracking of partially shaded
solar PV system using modified Fibonacci search method with fuzzy controller. Int J Electr
Power Energy Syst 43:754–765

9. Chen Y, Jhang Y, Liang R (2016) A fuzzy-logic based auto-scaling variable step-size MPPT
method for PV systems. Sol Energy 126:53–63



Global Maximum Power Point Tracking-Based … 161

10. Punitha K, Devaraj D, Sakthivel S (2013) Development and analysis of adaptive fuzzy con-
trollers for photovoltaic system under varying atmospheric and partial shading condition. Appl
Soft Comput 13:4320–4332

11. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings
of the sixth international symposium on micro machine and human science: New York, NY,
pp 39–43

12. Eberhart R, Shi Y, Kennedy J (2001) Swarm intelligence. Elsevier
13. James K, Russell E (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE

International conference on neural networks, pp 1942–1948
14. Seo J, Im CH, Heo C, Kim J, Jung H, Lee C (2006) Multimodal function optimization based

on particle swarm optimization. IEEE Trans Magn 42:1095–1098
15. Liu Y, Huang Sh, Huang J, Liang W (2012) A particle swarm optimization-based maximum

power point tracking algorithm for PV systems operating under partially shaded conditions.
IEEE Trans Energy Convers 27(4):1027–1035

16. Kamarzaman N, Ta C (2014) A comprehensive review of maximum power point tracking
algorithms for photovoltaic systems. Renew Sustain Energy Rev 37:585–598

17. Phimmasone V, Endo T, Kondo Y, Miyatake M (2009) Improvement of the maximum power
point tracker for photovoltaic generators with particle swarm optimization technique by adding
repulsive force among agents. Electr Mach Syst, 1–6

18. MiyatakeM,VeeracharyM, Toriumi F, Fujii N, KoH (2011)Maximum power point tracking of
multiple photovoltaic arrays: a PSO approach. IEEE Trans Aerosp Electron Syst 47:367–380

19. Seyedmahmoudian M, Mekhilef S, Rahmani R, Yusof R, Shojaei A (2014) Maximum power
point tracking of partial shaded photovoltaic array using an evolutionary algorithm: a particle
swarm optimization technique. J Renew Sustain Energy 6(2):1–13

20. Rezk H, Fathy A, Abdelaziz AY (2017) A comparison of different global MPPT techniques
based on meta-heuristic algorithms for photovoltaic system subjected to partial shading con-
ditions. Renew Sustain Energy Rev 74:377–386

21. Seyedmahmoudiana M, Horan B, Soon T, Rahmani R, Oo A, Mekhilef S, Stojcevski A (2016)
State of the art artificial intelligence-based MPPT techniques for mitigating partial shading
effects on PV systems—a review. Renew Sustain Energy Rev 64:435–455

22. Dorigo M, Gambardella L (1997) Ant colony system: a cooperative learning approach to the
traveling salesman problem. IEEE Trans Evol Comput 1:3–66

23. Shen Q, Jiang J, Tao J, Shen G, Yu R (2005) Modified ant colony optimization algorithm for
variable selection in QSAR modeling: QSAR studies of cyclooxygenase inhibitors. Chem Inf
Model 45:1024–1029

24. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag
1:28–39

25. DorigoM,Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating
agents. IEEE Trans Syst Man Cybern Part B Cybern 26:29–41

26. Rahmani R, Yusof R, SeyedmahmoudianM,Mekhilef S (2013) Hybrid technique of ant colony
and particle swarm optimization for short termwind energy forecasting.Wind Eng IndAerodyn
123:163–170

27. Sabrina T, Larbes C, Toumi K, Benatchba K (2017) A new MPPT controller based on the ant
colony optimization algorithm for photovoltaic systems under partial shading conditions. Appl
Soft Comput 58:465–479

28. Yu L, Liu K, Li K (2007) Ant colony optimization in continuous problem. Front Mech Eng
China 2:459–462

29. Benyoucef A, Chouder A, Kara K, Silvestre A, Sahed O (2015) Artificial bee colony based
algorithm for maximum power point tracking (MPPT) for PV systems operating under partial
shaded conditions. Appl Soft Comput 32:38–48

30. Ramli M, Twaha S, Ishaque K, Al-turki Y (2017) A review on maximum power point tracking
for photovoltaic systems with and without shading conditions. Renew Sustain Energy Rev
67:144–159



162 D. M. Atia

31. Holland J (1975) Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. UMichigan Press

32. Ramaprabha R, Mathur B (2012) Genetic algorithm based maximum power point tracking for
partially shaded solar photovoltaic array. Int J Res Rev Inf Sci (IJRRIS) 2(1):161–163

33. Mohajeri H, MoghaddamM, Shahparasti M, MohamadianM (2012) Development a new algo-
rithm formaximumpower point tracking of partially shaded photovoltaic arrays. In Proceedings
of the 2012, 20th Iranian conference on electrical engineering (ICEE), IEEE, pp. 489–494

34. Shaiek Y, Ben Smid M, Sakly A, Mimouni M (2013) Comparison between conventional meth-
ods and GA approach for maximum power point tracking of shaded solar PV generators. Sol
Energy 90:107–122

35. Kulaksız A, Akkaya R (2012) A genetic algorithm optimized ANN-basedMPPT algorithm for
a stand-alone PV system with induction motor drive. Sol Energy 86:2366–2375

36. Storn R, Price K (1997) Differential evolution—a simple and efficient Heuristic for global
optimization over continuous spaces. J Global Optim 11:341–359

37. Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for
global optimization over continuous spaces. ICSI, Berkeley

38. TajuddinaM, Ayobb Sh, Salamb Z, SaadcM (2013) Evolutionary basedmaximum power point
tracking technique using differential evolution algorithm. Energy Build 67:245–252

39. Tey K, Mekhilef S, Yang H, Chuang M (2014) A differential evolution based MPPT method
for photovoltaic modules under partial shading conditions. Int J Photoenergy 2014:1–10

40. Karaboga D, Okdem S (2004) A simple and global optimization algorithm for engineering
problems: differential evolution algorithm. Turk J Electr Eng 12(1):53–60

41. Taheri H, Salam Z, Ishaque K (2010) A novel maximum power point tracking control of
photovoltaic system under partial and rapidly fluctuating shadow conditions using differential
evolution. In: Proceedings of the 2010 IEEE symposium on industrial electronics and applica-
tions (ISIEA), IEEE, pp 82–91

42. Tajuddin M, Ayob S, Salam Z (2012) Tracking of maximum power point in partial shading
condition using differential evolution (DE). In: Power energy (PECon), pp 384–393

43. Ahmed J, Salam Z (2014) A maximum power point tracking (MPPT) for PV system using
Cuckoo search with partial shading capability. Appl Energy 119:118–130

44. Assis A, Mathew Sh (2016) Cuckoo search algorithm based maximum power point tracking
for solar PV systems. J Renew Sustain Energy 2(1):20–38

45. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
46. Mohanty S, Subudhi B, Ray PK (2016) A new MPPT design using grey wolf optimization

technique for photovoltaic system under partial shading conditions. IEEETrans Sustain Energy
7:181–188

47. Rocha M, Sampaio L, da Silva S (2018) Maximum power point extraction in PV array under
partial shading conditions using GWO-assisted beta method. Renew Energy Power Qual J
1(16):450–455

48. Yang X (2009) Firefly algorithms for multimodal optimization. In: Stochastic algorithms:
foundations and applications SAGA 2009. Lecture notes in computer sciences, vol 5792, pp
169–178

49. Yang X (2010) Nature-inspired metaheuristic algorithms. Luniver Press
50. Sundareswaran K, Peddapati S, Palani S (2014) MPPT of PV systems under partial shaded

conditions through a colony of flashing fireflies. IEEE Trans Energy Convers 29:463–472
51. Kaced K, Larbes C, Ramzan N, Bounabi M (2017) Bat algorithm based maximum power point

tracking for photovoltaic system under partial shading conditions. Sol Energy 158(Septem-
ber):490–503

52. Lian L, Nayanasiri D, Maskell D, Vilathgamuwa D (2013) A simple and efficient hybrid
maximum power point tracking method for PV systems under partially shaded condition. In:
Proceedings of the annual conference on IEEE industrial electronics society, pp 14–19, 2013

53. SouzaN,LopesL, LiuX (2005)An intelligentmaximumpower point tracker using peak current
control. In: Proceedings of the IEEE power electronics specialists conference, pp 172–177



Global Maximum Power Point Tracking-Based … 163

54. Syafaruddin, Karatepe E, Hiyama T (2009) Artificial neural network-polar coordinated fuzzy
controller based maximum power point tracking control under partially shaded conditions. IET
Renew Power Gener 3:239–253

55. Punitha K, Devaraj D, Sakthivel S (2013) Artificial neural network based modified incremental
conductance algorithm for maximum power point tracking in photovoltaic system under partial
shading conditions. Energy 62:330–340

56. Chin C, Chin Y, Chua B, Kiring A, Teo K (2012) Fuzzy logic based MPPT for PV array
under partially shaded conditions. In: Proceedings of the international conference on advanced
computer science applications and technologies, pp 133–138

57. Daraban S, Petreus D, Morel C (2014) A novel MPPT (maximum power point tracking) algo-
rithm based on amodified genetic algorithm specialized on tracking the globalmaximumpower
point in photovoltaic systems affected by partial shading. Energy 74:374–388

58. Shaiek Y, Smida M, Sakly A, Mimouni M (2013) Comparison between conventional methods
andGAapproach formaximumpower point tracking of shaded solar PVgenerators. Sol Energy
90:107–122

59. Unlu M, Camur S, Arifoglu B (2013) A new maximum power point tracking method for PV
systems under partially shaded conditions. In: Proceedings of the international conference on
power engineering, energy and electrical drives, pp 13–17

60. Lian K, Jhang J, Tian I (2014) A maximum power point tracking method based on perturb-
and-observe combined with particle swarm optimization. IEEE J Photovoltaics 4:626–633

61. Li F,DengF,GuoS, FanX (2013)MPPTcontrol of PV systemunder partially shaded conditions
based on PSO-DE hybrid algorithm. In: Proceedings of the Chinese control conference, pp
7553–7557

62. Jiang L, Nayanasiri D, Maskell D, Vilathgamuwa D (2015) A hybrid maximum power point
tracking for partially shaded photovoltaic systems in the tropics. Renew Energy 76:53–65

63. Eltamaly A, Farh H (2019) Dynamic global maximum power point tracking of the PV systems
under variant partial shading using hybrid GWO-FLC, vol 177, pp 306–316

64. Eltamaly A, Farh H, OthmanM (2018) A novel evaluation index for the photovoltaic maximum
power point tracker techniques. Sol Energy 174:940–956

65. JiangL,MaskellD,Patra J (2013)Anovel ant colonyoptimization-basedmaximumpower point
tracking for photovoltaic systems under partially shaded conditions. Energy Build 58:227–236

66. Farh H, Eltamaly A, Othman M (2018) Hybrid PSO-FLC for dynamic global peak extraction
of the partially shaded photovoltaic system. PloS one 13(11):e0206171



On the Improvements
of Perturb-and-Observe-Based MPPT
in PV Systems

Mazen Abdel-Salam, Mohamed-Tharwat EL-Mohandes
and Mohamed Goda

Abstract There exist numerous maximum power point tracking techniques in
today’s market to maintain the operation of PV module at maximum power irre-
spective of the solar irradiation level and ambient temperature such as perturb-and-
observe (P&O)method, incremental conductance (InCond)method, fractional short-
circuit current (FSCC) method, and fractional open-circuit voltage (FOCV) method.
The perturb-and-observe (P&O) method is the most popular one because of its easy
implementation. The classical perturb-and-observe method may fail or deviate from
tracking the right direction to capture the correct maximum power point (MPP) of a
PV module exposed to a suddenly changed solar irradiation or ambient temperature.
The classical method fails to capture the MPP when the solar irradiation or ambi-
ent temperature follows a ramp with different slopes. This is because the method
can’t discriminate whether the change in module power is due to its own voltage
perturbation or due to the change in the irradiation or ambient temperature level.
Numerous approaches for improving, adapting, and optimizing the classical P&O
method have been published. However, they differ in many aspects such as tracking
speed, tracking accuracy, steady-state efficiency, and dynamic efficiency as well as
the number of used sensors, complexity, and cost. This chapter is aimed at report-
ing on the improvements made on the classical perturb-and-observe method under
sudden or ramp variations of irradiation level and/or ambient temperature with their
advantages and disadvantages as documented in the literature. This chapter is framed
as a review chapter.
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1 Introduction

In light of depletion with time the conventional fossil fuels for the generation of
electric energy, efforts are made to harness PV solar energy to serve continuously
increasing electric loads. The energy conversion efficiency of PVmodules is very low,
while they are expensive in price. This calls for operating themodule at themaximum
power point at all operating conditions, which is the main target of this chapter.

The resistance of load dictates the operating condition of the PV module because
of the PV module’s operating point will be located at the intersection of the module
and the load I–V curves. There is only one operating point at which the PV module
provides its maximum power point (MPP)whatever the value of the load. This occurs
when the load resistance is equal to its optimal value. But it is very difficult and even
if it is done, the operating point itself changes under varying irradiation and ambient
temperature conditions [1].

The goal of the maximum power point tracking (MPPT) is to match the resistance
of load to the optimal resistance of PV module. The MPPT uses a DC–DC converter
between the PV module and load to acts as an interface to operate at the maximum
power point (MPP) by changing the duty cycle of the converter as requested by the
MPPT tracker [1].

There exist numerous maximum power point tracking techniques in today’s mar-
ket to maintain the operation of PV module at maximum power irrespective of the
solar irradiation level and ambient temperature such as perturb-and-observe (P&O)
method, constant voltage (CV) method, incremental conductance (InCond) method,
and fractional open-circuit voltage method. The perturb-and-observe (P&O) method
is the most popular and common one because of its easy implementation [2].

The classical P&O method depends on the perturbation of the operating voltage
and observation of the polarity of the output power. The classical P&O method fails
to capture the correct MPP under sudden or ramp variations of solar irradiation and
ambient temperature. This is because the method can’t discriminate whether the
change in module power is due to its own voltage perturbation or due to the change
in the irradiation and ambient temperature level [2].

Numerous approaches for improving, adapting, and optimizing the classical P&O
method have been published. However, they differ in many aspects such as tracking
speed, tracking accuracy, steady-state efficiency, and dynamic efficiency as well as
the number of used sensors, complexity, and cost [2].

2 Classical Perturb-and-Observe (P&O) Method [3]

The mechanism of the classical P&O method is based on the perturbation of the
module operating point and observation of the change in module output power. The
polarity of the module output power defines the direction of the coming perturbation.
For positive polarity, the next voltage perturbation can increase or decrease in the
voltage, the same as that for the previous perturbation. For negative polarity, the
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Fig. 1 Flowchart of the classical P&O method

next voltage perturbation will be in the opposite direction of the previous one. The
flowchart of the classical P&O method is shown in Fig. 1.

Step 1: The tracker senses the PV module/array output current I(k − 1) and
output voltage V (k − 1) to calculate the tracker power P(k − 1) (=
V (k − 1) * I(k − 1)) at the (k − 1)th sampling instance.

Step 2: The tracker perturbs the voltage.
Step 3: The tracker senses the module/array output current I(k) and output

voltage V (k) to calculate the output power P(k) [= V (k) * I(k)] at the
(k)th sampling instant.

Step 4: The tracker observes the polarity of the change of the output power
(�P) which is equal to [P(k) − P(k − 1)].

Step 4.1: If �P > 0, the next perturbation must be in the same direction of the
previous one.

Step 4.1.1: If the previous perturbation (�V ) which is equal to [V (k)− V (k − 1)]
is positive, the next perturbation will be positive and the duty cycle is
to be increased to increase the operating voltage (V ref) as the type of
the DC–DC converter is boost one.

Step 4.1.1.1: The trackers go back to step #1.
Step 4.1.2: If the previous perturbation (�V ) which is equal to [V (k)− V (k − 1)]

is negative, the next perturbation will be negative and the duty cycle
is to be decreased to decrease the operating voltage (V ref).

Step 4.1.2.1: The trackers go back to step #1.
Step 4.2: If �P < 0, the next perturbation must be in the opposite direction of

the previous one.
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Step 4.2.1: If the previous perturbation (�V ) which is equal to [V (k)− V (k − 1)]
is positive, the next perturbation will be negative and the duty cycle
is to be decreased to decrease the operating voltage (V ref).

Step 4.2.1.1: The trackers go back to step #1.
Step 4.2.2: If the previous perturbation (�V ) which is equal to [V (k + 1)− V (k)]

is negative, the next perturbation will be positive and the duty cycle
is to be increased to increase the operating voltage (V ref).

Step 4.2.2.1: The trackers go back to step #1.
Step 4.3: If �P = 0, the MPP is captured.
Step 4.4: The tracker goes back to step #1.

Figure 2 shows that the classical P&O method proceeds in the correct direction
under uniform irradiation level and constant ambient temperature. Figure 3 shows
that the classical P&O method proceeds in the wrong direction under the sudden
variation of solar irradiation.

3 Methodology

This chapter presents briefly the different methods proposed in the literature for
maximum power point tracking in PV systems under varying irradiation level and
ambient temperature. The problems facing thesemethods forMPPTunder the sudden
variation of solar irradiation and ambient temperature are explored.

The tracking speed is defined as how fast the tracker is to capture the MPP when
the irradiation level and ambient temperature change. The time taken to reach the
MPP must be short. The shorter the time taken to reach the MPP, the smaller is the
power losses with the improvement of the efficiency [2].

Fig. 2 MPP tracking by the classical P&O method under uniform irradiation level and constant
ambient temperature for operating point lied to the left of the MPP with correct first voltage pertur-
bation
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The steady-state MPPT efficiency (ηsteady-state) is the ratio of the captured power
drawn by the tracker to themaximum power provided theoretically by the PVmodule
(as determined from the module datasheet) under stable irradiation level and ambient
temperature [2].

The dynamic MPPT efficiency (ηdynamic) refers to the ratio of the captured power
drawn by the tracker to themaximum power provided theoretically by the PVmodule
(as determined from the module datasheet) under non-uniform irradiation level and
ambient temperature over the test time [2].

Most of the MPPT methods depend on sensing the module output voltage and
current. The irradiance or temperature sensors are rarely used in MPPT [3].

4 Comparison Between Techniques

Some solutions have been recently reported to overcome two problems facing the
classical P&O method under the sudden variation of irradiation level and ambient
temperature.

The first problem is devoted to explore the possibility of the classical P&Omethod
to predict false results due to the variation of irradiation level [2].

The second problem is focused on the deviation of the classical P&O method
from the MPP due to the exposure to suddenly changed ambient temperature [2].

5 dP-P&OMethod [4, 5]

Sera et al. [4, 5] proposed a modified perturb-and-observe algorithm based on decou-
pling the effect of ramp change of irradiation on the module output power from that

Fig. 3 MPP tracking by the classical P&O method with module exposed to a large increasing step
of irradiation level with initial operating point lied to the right of MPP and incorrect first voltage
perturbation |�Pirr| > |�Pperturb|



170 M. Abdel-Salam et al.

Fig. 4 Sequence of dP-P&O
method [4, 5]

Fig. 5 Mechanism of
dP-P&O method [4, 5]

due to the perturbation in the operating voltage. This algorithm is named dP-P&O.
The decoupling mechanism is made by adding an extra measurement at the middle
of the perturbation time (T /2). Thus, the tracker receives the change in the module
output power caused by perturbation of the operating voltage only.

Figures 4 and 5 show the mechanism of dP-P&O algorithm:

dP = dP1 − dP2 = (PX − PK) − (PK + 1 − PX) = 2PX − PK + 1 − PK (1)

The dP-P&O algorithm method is not able to track the correct MPP under step
sudden variation of irradiation level because the authors assumed the change in
irradiation takes place at a constant rate, i.e., as a ramp change. The flowchart of the
classical P&O method is shown in Fig. 6.

Step 1: The tracker senses the module/array output current I(k − 1) and output
voltageV (k − 1) to calculate the tracker powerP(k − 1) (=V (k − 1) * I(k
− 1)) at the (k − 1)th sampling instance.

Step 2: The tracker perturbs the voltage.
Step 3: The tracker senses the module/array output current I(k) and output volt-

age V (k) to calculate the output power P(k) [= V (k) * I(k)] at the (k)th
sampling instant.

Step 4: Decoupling process between the change in power caused by the voltage
perturbation of the tracker and the change in power caused by irradiation
change at the sampling instant (T /2) between the (k − 1)th and (k)th
sampling instants.
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Fig. 6 Flowchart of the dP-P&O method [4, 5]

Step 5: Calculate the power change caused purely by the voltage perturbation of
the tracker command by using Eq. (1).
Hint: In the dP-P&O method, the power change Pk+1 − Pk , Fig. 5, is
replaced by dP as calculated in Eq. (1) to avoid confusion of the tracker
due to the rapidly changing irradiation.

Step 6: The tracker uses the classical P&O method after decoupling process.
Step 6-a: If dP is positive and the voltage perturbation is positive, the tracker

decreases the duty cycle to increase the voltage because of the type of
the DC–DC converter is buck one.

Step 6-b: If dP is positive and the voltage perturbation is negative, the tracker
increases the duty cycle to decrease the voltage.

Step 6-c: If dP is negative and the voltage perturbation is positive, the tracker
increases the duty cycle to decrease the voltage.

Step 6-d: If dP is negative and voltage perturbation is negative, the tracker decreases
the duty cycle to increase the voltage.

Step 7: If dP = 0 (reaching MPP), the tracker will stop tracking process and if
dP �= 0, the tracker returns to step 1.
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6 Modified Perturb-and-Observe (MP&O) Method [6]

Yafaoui et al. proposed [6] amodified P&Oalgorithm called (MP&O)which depends
on separating two changes in module output power. (i) The change in module output
power caused by (sudden) step change of irradiation level and (ii) the change in mod-
ule output power caused by voltage perturbation. This algorithm adds every perturba-
tion step an irradiation-changing estimate process to ensure that the tracker receives
the change in module output power due to the change of irradiation level, Fig. 7.

Figure 8 shows the flowchart of the MP&Omethod. Because the estimate process
stops tracking of the maximum power point by keeping the PV voltage constant, the
tracking speed of MP&Omethod is only half of the classical P&O method. Figure 9
shows the flowchart of the MP&O method.

Step 1: The tracker senses module/array output voltage V (k − 2) and current
I(k − 2) at the (k − 2)th step.

Step 2: The tracker calculates the power at the (k − 2)th step, which is equal to
P(k − 2) [= V (k − 2) * I(k − 2)].

Step 3: The tracker perturbs the voltage to be at (k − 1)th.
Step 4: The tracker senses module/array output voltage V (k − 1) and current

I(k − 1) at the (k − 1)th step.

Fig. 7 Sequence of MP&O method [6]

Fig. 8 Modes 1 mode 2 of MP&O method [6]
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Fig. 9 Flowchart of MP&O algorithm [6]

Step 5: The tracker calculates the power at (k − 1)th which is equal to P(k − 1)
[= V (k − 1) * I(k − 1)].

Step 6: The tracker keeps the PV voltage constant for the next control period
(estimate process with no voltage perturbation) according to mode 1 to
be at kth step.

Step 7: The tracker senses module/array output voltage V (k) and current I(k) at
the (k)th step.

Step 8: The tracker calculates the power at (k)th, which equal to P(k) =
V (k) * I(k).

Step 9: The tracker calculates the power variation due to the voltage perturbation
and irradiation change which is equal to P(k) − P(k − 2) according to
mode 1.

Step 10: The tracker calculates the power variation due to the irradiation change
only, which is equal to dP [= P(k) − P(k − 1)] according to mode 2.

Step 11: The tracker calculates the power variation due to the voltage perturbation
only, which is equal to the difference between power variations in steps
9 and 10 (= [P(k) − P(k − 2)] − dP) according to mode 2.

Step 12: The tracker determines the new PV voltage based on the step 11 accord-
ing to the classical P&O method as follows:

Step 12-a: If the change in power is positive (increase of power) and the voltage
perturbation is positive (increase of voltage), the tracker decreases the
duty cycle to increase the voltage as the type of the DC–DC converter
is buck one.
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Step 12-b: If the change in power is positive and the change in voltage perturbation
is negative, the tracker increases the duty cycle to decrease the voltage.

Step 12-c: If the change in power is negative and the change in voltage perturbation
is positive, the tracker increases the duty cycle to decrease the voltage.

Step 12-d: If the change in power is negative and the change in voltage perturbation
is negative, the tracker decreases the duty cycle to increase the voltage.

Step 13: If the change in power due to the voltage perturbation as calculated in
step 11 is equal to zero (reachingMPP), the tracking process terminates;
otherwise, the tracker returns to step 1.

7 Estimate-Perturb-Perturb (EPP) Method [7]

A new method was proposed [7] to enhance the dynamic efficiency of the classical
P&Omethod and the speedof the tracker of theMP&Omethod.Thismethod is named
the Estimate-Perturb-Perturb (EPP) method. The tracker of the EPP method adds
an irradiation-changing estimate process after every two consequent perturbations,
Fig. 10. The EPPmethod is faster than theMP&Omethodwith one and half times [6].

Figure 11 shows the flowchart for the proposed EPP method. Figure 10 shows
the time sequences for the EPP method. Compared with the MP&O method, the
EPP method has the same delay time between the estimate process and the perturb
process. Therefore, the EPPmethod has obvious advantages over theMP&Omethod.

Step 1: The tracker senses module/array output voltage V (k − 3) and current
I(k − 3) at the (k − 3)th step.

Step 2: The tracker calculates the power at the (k − 2)th, which is equal to P(k
− 3) [= V (k − 3) * I(k − 3)].

Step 3: The tracker perturbs the voltage to be at the (k − 2)th step.
Step 4: The tracker senses module/array output voltage V (k − 2) and current

I(k − 2) at the (k − 2)th step.
Step 5: The tracker calculates the power at the (k − 2)th step, which is equal to

P(k − 2) [= V (k − 2) * I(k − 2)].
Step 6: The tracker calculates the change in powerP(k−3)−P(k−2) anddeter-

mines the second perturbation according to the classical P&O method.
Step 7: The tracker perturbs the voltage (second perturbation) to be at the (k −

1)th step.
Step 8: The tracker senses module/array output voltage V (k − 1) and current

I(k − 1) at the (k − 1)th step.

Fig. 10 Sequence of EPP method [7]
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Step 9: The tracker calculates the power at the (k − 1)th step, which is equal to
P(k − 1) [= V (k − 1) * I(k − 1)].

Step 10: The tracker keeps the PV voltage constant for the next control period
(estimate process with no voltage perturbation) according to mode 1 to
be at the kth step.
Hint: The estimate process ismade after two perturbation steps in voltage
to increase the tracking speed when compared with the MP&O [6] as
explained above.

Step 11: The tracker senses module/array output voltage V (k) and current I(k) at
the (k)th step.

Step 12: The tracker calculates the power at the (k)th, which is equal to P(k) [=
V (k) * I(k)].

Step 13: The tracker calculates the power variation due to the voltage perturbation
and irradiation change, which is equal to P(k) − P(k − 2) according to
mode 1.

Step 14: The tracker calculates the power variation due to the irradiation change
only, which is equal to dP [= P(k) − P(k − 1)] according to mode 2.

Step 15: The tracker calculates the power variation due to the voltage perturbation
only, which is equal to the difference between power variations in steps
9 and 10 [= {P(k) − P(k − 2)} − dP] according to mode 2.

Step 16: The tracker determines the new PV voltage based on step 15 according
to the classical P&O method as follows:

Fig. 11 Flowchart of EPP method [7]
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Step 16-a: If the change in power is positive and the voltage perturbation is positive,
the tracker decreases the duty cycle to increase the voltage because of
the type of the DC–DC converter is buck one.

Step 16-b: If the change in power is positive and the change in voltage perturbation
is negative, the tracker increases the duty cycle to decrease the voltage.

Step 16-c: If the change in power is negative and the change in voltage perturbation
is positive, the tracker increases the duty cycle to decrease the voltage.

Step 16-d: If the change in power is negative and the change in voltage perturbation
is negative, the tracker decreases the duty cycle to increase the voltage.

Step 17: If the change in power due to voltage perturbation as calculated in step
15 is equal to zero (reaching MPP), the tracking process terminates;
otherwise, the tracker returns to step 1.

Fig. 12 Performance of the
drift-free modified P&O
under sudden variation of
solar irradiation on a the I–V
curve b the P–V curve



On the Improvements of Perturb-and-Observe-Based MPPT … 177

8 Drift-Free Modified P&OMethod [8]

Figure 12 shows the operating principle of the free-drift modified method [8]. As
shown in Fig. 12a, the initial operating point is at point (2). The operating voltage
is perturbed and point (2) moves to point (3). While the voltage is perturbed, the
irradiation is suddenly increased making the operating point to move from point
(3) to point (4). Now the tracker calculates the net change in module output current,
which is equal to�I [= I4(k)− I2((k− 1)] > 0.Also, the tracker calculates the change
in module output power and voltage which is equal to �P [= P4(k) − P2(k − 1)] >
0 and �V [= V 4(k) − V 2(k − 1)] > 0, respectively, according to the P–V curve as
shown in Fig. 12b. The three changes �P, �V, and �I are positive. One can observe
that both �V and �I can never have the same sign for a unique irradiation level.
Both �V and �I could be positive only for an increase in irradiation level shown
in Fig. 12a. Thus, an increase in irradiation can be detected by using the additional
current change �I and thereby the duty cycle is to be increased for decreasing the
operating voltage to eliminate the drift problem resulting from moving the operating
point closer to theMPP as shown in Fig. 12b. The flowchart of the drift-free modified
P&O MPPT technique is shown in Fig. 13.

Step 1: The tracker senses the module/array output current I(k − 1) and output
voltage V (k − 1) at the (k − 1)th step.

Step 2: The tracker calculates the output power at the (k − 1)th step, which equal
to P(k − 1) [= V (k − 1) * I(k − 1)].

Fig. 13 Flowchart of drift-free modified P&O MPPT algorithm [8]
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Step 3: The tracker perturbs the voltage to be at the (k)th step.
Step 4: The tracker senses module/array output voltage V (k) and current I(k) at

the (k)th step.
Step 5: The tracker calculates the power at the (k)th step, which is equal to P(k)

[= I(k) * V (k)].
Step 6: The tracker calculates the change in current dI [= I(k) − I(k − 1)].
Step 7: The tracker calculates the change in voltage dV [= V (k) − V (k − 1)].
Step 8: The tracker calculates the change in power dP [= P(k) − P(k − 1)].

Step 8-a: If dP > 0 and dV < 0, the tracker increases the duty cycle to decrease the
voltage because of the type of the DC–DC converter is buck one.

Step 8-b: If dP > 0, dV > 0, and dI > 0, the tracker increases the duty cycle to
decrease the voltage.

Step 8-c: If dP > 0, dV > 0, and dI < 0, the tracker decreases the duty cycle to
increase the voltage.

Step 8-d: If dP < 0 and dV > 0, the tracker increases the duty cycle to decrease the
voltage.

Step 8-e: If dP > 0 and dV < 0, the tracker decreases the duty cycle to increase the
voltage.

9 Combined Two-Method MPPT Tracker [9]

Dorofte et al. proposed [9] a combined two-algorithm MPPT control scheme to
overcome the trade-off problem between tracking speed and tracking accuracy and to
increase the dynamic efficiency of the classical perturb-and-observemethodwhen the
irradiation level is suddenly varied. This proposed algorithm is based on combining
the classical P&O method with the fractional open-circuit voltage (FOCV) method.
Figure 14 shows the flowchart for the combined two-algorithm MPPT scheme.

Step 1: The tracker senses module output current I.
Step 2: If I < 0.7 A, the tracker follows the FOCV method.

Step 2-a: The tracker measures the module open-circuit voltage V o.c corresponding
to a duty cycle D of zero value.

Step 2-b: The tracker sets the operating point voltage at 0.75 V o.c.
Step 2-c: The tracker waits for 40 s and back to measure again the module open-

circuit voltage V o.c at zero value of the duty cycle D.
Step 2-d: The tracker sets the operating point voltage again at 0.75 V o.c.
Step 2-e: The tracker moves back to step 1 to sense module output current I again.
Step 3: If I > 0.7 A, the tracker follows the classical P&O method.

Step 3-a: The tracker senses the module output current I(k − 1) and voltage V (k −
1) at the (k − 1)th step.

Step 3-b: The tracker calculates the module power at the (k − 1)th step, which is
equal to P(k − 1) [= V (k − 1) * I(k − 1)].

Step 3-c: The tracker perturbs the voltage to be at the kth step.
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Step 3-d: The tracker senses the module output current I(k) and voltage V (k) at the
(k)th step.

Step 3-e: The tracker calculates the module power at the (k)th step, which is equal
to P(k) [= V (k) * I(k)].

Step 3-f: The tracker calculates the change in module output voltage �V [= V (k)
− V (k − 1)].

Step 3-g: The tracker calculates the change in module output voltage �P [= P(k)
− P(k − 1)].

Step 3-h: The tracker calculates the slope �P/�V.
Step 3-i: If the slope is positive, the tracker increases the voltage by increasing the

duty cycle because the type of the DC–DC converter is boost one.
Step 3-j: If the slope is negative, the tracker decreases the voltage by decreasing

the duty cycle.
Step 4: The tracker moves back to step 1 to sensemodule output current (I) again.

10 Method Proposed Based on Product Sign of Voltage
and Power Changes [10]

Kamal et al. proposed [10] an improved P&O technique to solve the problem of
the classical method under sudden variation of solar irradiance. In this technique,

Fig. 14 Control flowchart of the proposed combined MPPT method [9]
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the polarities of the voltage perturbation (�V ) and that of the corresponding power
change (�P) were taken into account and multiplied together. Unfortunately, the
results showed better performance for decreasing oscillations amplitude, but the
dynamic efficiency is still low. The tracking efficiency showed overshoot values
that can reach unjustified hypothetical values up to 400% [10]. Figure 15 shows the
flowchart for this method [10].

Step 1: The tracker senses the module output current I(k − 1) and voltage V (k −
1) at the (k − 1)th step.
Hint: According to the flowchart, �c is the voltage step size and c(k) =
V (k) and c(k − 1) = V (k − 1), which are the module measured voltage
at the kth step and the preceding step.

Step 2: The tracker calculates the module power at the (k − 1)th step, which is
equal to P(k − 1) [= V (k − 1) * I(k − 1)].

Step 3: The tracker perturbs the voltage to be at the kth step.
Step 4: The tracker senses the module output current I(k) and voltage V (k) at the

(k)th step.
Step 5: The tracker calculates the module power at the (k)th step, which is equal

to P(k) [= V (k) * I(k)].
Step 6: The tracker calculates the change in module output voltage �V [= V (k)

− V (k − 1)].
Step 7: The tracker calculates the change in module output power �P [= P(k) −

P(k − 1)].
Step 8: The tracker checks the sign of both �V and �P.

Step 8-a: If dP > 0 and dV > 0, the tracker increases the voltage by decreasing the
duty cycle because the type of the DC–DC converter is buck one.

Fig. 15 Flowchart of the proposed method [10]
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Fig. 16 Flowchart of the modified P&O method proposed in [2]

Step 8-b: If dP > 0 and dV < 0, the tracker decreases the voltage by increasing the
duty cycle.

Step 8-c: If dP < 0 and dV < 0, the tracker increases the voltage by decreasing the
duty cycle.

Step 8-d: If dP < 0 and dV > 0, the tracker decreases the voltage by increasing the
duty cycle.

11 An Improve Perturb-and-Observe-Based MPPT [2]

Abdel-Salam et al. proposed [2] an improved perturb-and-observe method. In com-
parison with the classical one, the proposed method perturbs the operating voltage
and observes the change in module output voltage, current, and power. This method
is not in need to detect threshold current parameter to decide on the occurrence of a
sudden change in irradiation level or ambient temperature. Moreover, the proposed
method tracks the MPP under changes of irradiation level and/or ambient temper-
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ature. The authors discuss the performance of the classical P&O in 16 study cases
under sudden variation of irradiation level whatever (i) the location of the initial
operating point to the right or left of the MPP (ii) the value of the perturbation in
irradiation level with large or small step (iii) the direction of the irradiation-level
change as increase or decrease. The proposed technique captured the correct MPP in
all 16 cases. The proposed technique observes the change in module output voltage
�V, current �I, and power �P. The authors use the polarity of �I and �I/�V to
direct the tracker to the correct MPP whatever there is a change in irradiation level
or no. The steady-state efficiency of the proposed technique is equal to 99.48% and
its dynamic efficiency is equal to 98.03%. Figure 16 shows the flowchart for this
method [2].

Step 1: Define voltage at maximumpower point (VMPP) to the tracker accord-
ing to the datasheet of the PV module.

Step 2: The tracker senses the module/array output current I(k) and output
voltage V (k) to calculate the tracker power P(k) (= V (k) * I(k)) at
the kth sampling instance.

Step 3: The tracker compares the operating voltage V (k) with VMPP to deter-
mine where the operating point is located with respect to the MPP.

Step 4: The tracker perturbs the voltage in the right direction toward theMPP.
Hint: The voltage V (k) is compared with VMPP listed in the datasheet
in order to perform the first perturbation of the duty cycle in the right
direction to sense new values of V (k + 1) and I(k + 1) through steps
3 and 4. These steps are done for the first voltage perturbation step
only.

Step 5: If the net change in power �P [= P(k + 1) − P(k)] is equal to zero,
this means that the MPP is captured and the tracker stops.

Step 6: If the net change in power �P [= P(k + 1) − P(k)] is not equal to
zero, this means that the MPP is not captured and the tracker moves
to step #7.

Step 7: The tracker senses the module/array output current I(k + 1) and
output voltage V (k + 1) to calculate the tracker power P(k + 1) (=
V (k + 1) * I(k + 1)) at the (k + 1)th sampling instance.

Step 8: If there is no sudden change of the irradiation level or ambient tem-
perature, the change of current

∑
�I = �IPerturb and the change of

voltage
∑

�V = �VPerturb.
Step 9: If there is a sudden change of irradiation level or ambient temperature,

the net change of current
∑

�I [= �IPerturb + �I irr/temp] and the net
change of voltage

∑
�V [= �VPerturb + �V irr/temp].

Step 10: The tracker senses the net change in current
∑

�I and voltage
∑

�V
after each perturbation whatever there is a sudden change in irradia-
tion level or ambient temperature or not.

Step 11: The tracker checks if
∑

�I = 0,
∑

�I > 0 or
∑

�I < 0.
Step 11.I: If

∑
�I = 0, the tracker increases the duty cycle to increase the

operating voltage toward the MPP.
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Step 11.II: If
∑

�I > 0, the tracker checks
∑

�I/
∑

�V.
Step 11.II.a: If

∑
�I > 0 and

∑
�I/

∑
�V > 0, the tracker increases the duty cycle

to increase the operating voltage toward the MPP because the type of
the DC–DC converter is boost one.

Step 11.II.b: If
∑

�I > 0 and
∑

�I/
∑

�V < 0, the tracker decreases the duty cycle
to decrease the operating voltage toward the MPP.

Step 11.III: If
∑

�I < 0, the tracker checks
∑

�I/
∑

�V.
Step 11.III.a: If

∑
�I < 0 and

∑
�I/

∑
�V > 0, the tracker decreases the duty cycle

to decrease the operating voltage toward the MPP.
Step 11.III.b: If

∑
�I < 0 and

∑
�I/

∑
�V < 0, the tracker increases the duty cycle

to increase the operating voltage toward the MPP.
Step 12: If the net change in power �P [= P(k + 1) − P(k)] is equal to zero,

this means that the MPP is captured and the tracker stops its MPP
tracking.

Step 13: If the net change in power �P [= P(k + 1) − P(k)] is not equal to
zero, this means that the MPP is not captured and the tracker returns
to step #7.

12 Method Proposed Based on Normalized Power Change
[11]

Ahmed et al. proposed amethod [11] to enhance the dynamic efficiency of the tracker
of the classical P&O method. This method is based on an adaptive perturbation step
size (�V ) in the range 0.5–2% of the open-circuit voltage V o.c to decrement the
oscillation amplitude. Figure 17 shows the flowchart for this method [11].

Step 1: The tracker starts by climbing the P–V curve with step size equal to 2% of
the V o.c until it reaches the vicinity of MPP similar to the classical P&O
method.

Step 2: The operating point oscillates around MPP. The oscillation is detected by a
special mechanism [11] and the perturbation size is reduced until it reaches
a certain minimum value 0.5% of the open-circuit voltage (V o.c).
Hint: Due to the small oscillation, there will be always a difference in power
(�P) at every consecutive sample. The value of�P/P is kept below a certain
threshold limit (Tr1) as the perturbation size has reached its minimum value.

Step 3: If �P/P > Tr1, the irradiance experiences a change.
Hint: To determine whether the irradiance follows a slope or a step change,
another threshold value (Tr2) is introduced. If Tr1 <�P/P < Tr2, the change
in the irradiance is considered as gradual. On the other hand, if �P/P >
Tr2, the irradiance is considered to change rapidly from one level to another
level.
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Step 4: If �P/P > Tr2, the tracker increases the perturbation size to 2% of the V o.c

to ensure that the MPP is tracked at a new level of irradiance according to
the classical P&O method.

Step 5: If Tr1 < �P/P < Tr2, the tracker increases the perturbation size to 1% of the
V o.c to ensure that the MPP is tracked at a new gradual change.

It is worthy to mention that the values of Tr1 and Tr2 have not been defined [11].

13 Three-Point Weight Comparison Method [12]

This method tried to avoid the oscillation problem of the voltage perturbation around
the MPP and the problem of sudden variation of solar irradiation [12]. The classical
P&O method compares only two points, which are the present operation point and
the subsequent point after voltage perturbation, to observe their changes in power
and thus decide whether increase or decrease of the module voltage is requested. In
comparison with the classical one, the method of the three-point weight comparison
perturbs the module operating voltage and compares the module output power at
three points of the P–V curve. Figure 19 shows the flowchart of the three-point
weight comparison method. The main issue of this method is that its speed is very
low because the number of perturbations per iteration is three from A to B, from B to
C, and from C to A. As shown from cases (1) and (2) in Fig. 18, the MPP is tracked
and the tracker did not stop but perturb the operating voltage again to complete the
iterative procedure making large power loss.

Fig. 17 Flowchart of the modified P&O method proposed in [11]
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Step 1: The tracker senses themodule/array output current (IA) and output voltage
(VA) to calculate the power (PA) at the operating point A, which is equal
to IA * VA.

Step 2: The tracker perturbs the voltage from A to B.
Step 3: The tracker senses themodule/array output current (IB) and output voltage

(VB) to calculate the power PB [= IB * VB] for the operating point B after
first perturbation.

Step 4: The tracker doubly perturbs the voltage in the opposite direction from B
to C.

Step 5: The tracker senses themodule/array output current (IC) and output voltage
(VC) to calculate the power PC [= IC * VC] for the operating point C after
double perturbation in the opposite direction.

Step 6-a: The tracker compares the three points to determine the direction of the
next perturbation.

Step 6-b: If PB ≥ PA and PA > PC, the tracker sets the operating point at B by
increasing the duty cycle to increase the voltage because of the type of
the DC–DC converter is boost one (case (1) in Fig. 18).
Hint: The voltage step size value is equal to “e” according to the flowchart.

Fig. 18 Possible states of the three perturbation method [12]
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Fig. 19 Algorithm for the three-point weight comparison [12]

Step 6-c: If PB < PA and PA < PC, the tracker sets the operating point at C by
stopping the tracking process because the tracker is already at point C
(case (3) in Fig. 18).

Step 6-d: If PB > PA and PA < PC, the tracker sets the operating point at A by
increasing the duty cycle to increase the voltage (cases (4) and (5) in
Fig. 18).

Step 6-e: If PB < PA and PA > PC, the tracker sets the operating point at A by
increasing the duty cycle to increase the voltage (case (2) in Fig. 18).

Step 6-f: If PB < PA and PA = PC, the tracker sets the operating point at A by
increasing the duty cycle to increase the voltage (case (6) in Fig. 18).

Step 6-j: If PB = PA and PA < PC, the tracker sets the operating point at C by
stopping the tracking process because the tracker is already at point C
(case (7) in Fig. 18).

Step 6-h: If PB > PA and PA < PC, the tracker sets the operating point at C by
stopping the tracking process because the tracker is already at point C
(case (8) in Fig. 18).
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Step 6-i: If PB > PA and PA = PC, the tracker sets the operating point at B by
increasing the duty cycle to increase the voltage (case (9) in Fig. 18).

Step 7: The tracker returns back to step 1.

14 Voltage-Hold Perturbation and Observation
“VH-P&O” Method [13]

Abdalla et al. proposed [13] a modified method based on the voltage-hold pertur-
bation and observation “VH-P&O” to track correctly the MPP under irradiation
changes. Figure 20 shows the flowchart of the VH-P&O method. Actually, this
method has large oscillation amplitude the same as the classical one as well as
the tracking speed of this method is equal to that of the classical one.

Step 1: The tracker senses module/array output voltage V (n − 1) and current I(n
− 1) at the (n− 1)th step to calculate the power P(n− 1) [=V (n− 1) * I(n
− 1)] and the capacitor voltage CPV.

Step 2: The tracker perturbs the voltage.
Step 3: The tracker senses module/array output voltage V (n) and current I(n) at

the (n)th step to calculate the power P(n) [= V (n) * I(n)].
Step 4: The tracker calculates the change in power �P [= P(n) − P(n − 1)].
Step 5: The tracker follows the MPP until it oscillates around the MPP.
Step 6: The change in power due to oscillation is equal to �P.
Step 7: To capture MPP, the tracker sets the operating point at �P/2 to overcome

the oscillation problem.

Fig. 20 Proposed VH-P&O MPPT algorithm [13]
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Step 8: If �P > 0, �I > 0, and �V > 0, the tracker holds directly the reference
voltage to the capacitor voltage.

Step 9: If �P < 0, �I > 0, and �V > 0, the tracker decreases the duty cycle to
decrease the voltage because the type of DC–DC converter is boost one.

Step 10: If �P < 0, �I > 0, and �V < 0, the tracker increases the duty cycle to
increase the voltage.

Step 11: If �P > 0, �I > 0, and �V > 0, the tracker increases the duty cycle to
increase the voltage.

Step 12: If �P > 0, �I > 0, and �V < 0, the tracker decreases the duty cycle to
decrease the voltage.

Step 13: If �P < 0, �I < 0, and �V < 0, the tracker holds directly the reference
voltage to the capacitor voltage.

15 Curve-Fitting Method [14]

A curve-fitting-based method was proposed [14] to improve the performance of the
classical P&O by determining an optimum PV voltage close to that corresponding to
maximum power (Vmpp) of the datasheet of the PV module/array. Then, the classical
P&Omethod was applied with a small step size until reaching the real MPP. The idea
of this method is to predict the P–V curve of a PV module by using mathematical
equations or numerical approximations. This attempt to improve the performance
of the classical P&O method did not provide satisfactory results where the average
efficiency did not exceed 89.2%. Also, the tracking efficiency is very low during high
temperatures and low irradiation levels. This is in addition to the fact that this method
is not suitable under slope variation of solar irradiation and ambient temperature.

a = 5.75 × 10−7T 2
Cell − 2.3 × 10−2TCell − 2.08 × 10−3 (2)

b = −4 × 10−5T 2
Cell + 1.17 × 10−3TCell + 0.101 (3)

c = 7.25 × 10−4T 2
Cell − 1.26 × 10−2TCell − 1.9 (4)

d = −4.08 × 10−3T 2
Cell + 2.37 × 10−2TCell + 19.35 (5)

e = 4.18 × 10−3T 2
Cell + 3.4 × 10−2TCell − 12.4 (6)

PPV = aV 4
PV + bV 3

PV + cV 2
PV + dVPV + e (7)

At MPP

dPPV
dVPV

= 4aV 3
PV + 3bV 2

PV + 2cVPV + d (8)
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Fig. 21 Flowchart of the curve-fitting method [14]

Vmpp = −b ± √
b2 − 3ac

3a
(9)

Step 1: Define the module/array specifications at STC to the tracker (Fig. 21).
Step 2: The tracker senses module/array output current IPV and output voltage

VPV as well as the irradiation level and ambient temperature.
Step 3: The tracker calculates the module/array output power PPV and the cell

temperature (T cell).
Step 4: The tracker calculates the four coefficients (a, b, c, d, and e) by using

Eqs. (2–6).
Step 5: The tracker uses VPV, PPV, and the coefficients calculated in step 4 to

construct Eq. (7).
Step 6: The tracker differentiates Eq. (7) to generate Eq. (8).
Step 7: The tracker determines Vmpp by using Eq. (9).
Step 8: The tracker checks if the right-hand side of Eq. (8) equals to zero?

Step 8-a: If it is equal to zero, the tracker stops tracking process.
Step 8-b: If it is large than zero, the tracker increases the voltagewith small step size

to capture MPP by increasing the duty cycle as the type of the DC–DC
converter is boost one.

Step 8-c: If it is less than zero, the tracker decreases the voltage with small step
size to capture MPP by decreasing the duty cycle.
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Step 9: The tracker returns back to step 8.
Step 9-a: If step 8 is achieved, the tracker stops tracking process.
Step 9-b: If step 8 is not achieved, the tracker proceeds back to step 1.

16 Output Power Control-Based Method [15]

Azab proposed [15] an enhanced perturb-and-observe method. This enhanced
method is based on defining the value of the maximum power (Pmax) according
to the datasheet of the PV module, which is the main drawback disadvantage of the
method. Figure 22 shows the flowchart for this method. The maximum efficiency of
this method is only 95% and the tracking speed is low as outlined in the reported
results. Figure 22 shows the flowchart for this method.

Step 1: Define Pmax at STC according to the datasheet of the PV module.
Step 2: The tracker senses the module/array output voltage V and current I.
Step 3: The tracker calculates the actual power Pactual [= I * V ].
Step 4: The tracker compares Pmax with Pactual.

Step 4-a: If [Pmax − Pactual] equal to zero, the tracker stops tracking because it
captured the MPP.

Step 4-b: If [Pmax − Pactual] exceeds zero, the tracker increases Pmax until Pmax =
[Pactual + 0.5].

Fig. 22 Flowchart of the
proposed method [15]
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Step 4-c: If [Pmax − Pactual] less than zero, the tracker decreases Pmax until Pmax =
[Pactual − 0.5].

Step 5: Set Pmax equals to Pactual.
Step 6: Back to step 1.

17 Modified Adaptive Hill Climbing Method [16]

Xiao et al. proposed [16] a modified adaptive hill climbing method. This method is
called “MAHC” and based on the following equation:

a(K ) = M ∗ |∇P|
a(K − 1)

(10)

where �P is the change in module output power from voltage perturbation steps
(k) and (k + 1) and is equal to P(k + 1) − P(k) and M is a constant parameter.
The parameter (a) is an online parameter to change the perturbation step size to be
suitable for sudden changes in the irradiation level. The value of (M) depends on the
PV size and its chosen value has not justified yet. Figure 23 shows the flowchart for
this method.

Step 1: Define the values of ε and M to the tracker algorithm
Hint: ε refers to a certain current value defined to the tracker to detect if
there is a sudden change in irradiation level or not.

Fig. 23 Flowchart of the method proposed in [16]
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Step 2: The tracker senses the module/array output current I(k − 1) and output
voltage V (k − 1) at the (k − 1)th step.

Step 3: The tracker calculates the output power at (k − 1)th step, which is equal
to P(k − 1) [= V (k − 1) * I(k − 1)].

Step 4: The tracker perturbs the voltage to be at the (k)th step.
Step 5: The tracker senses the module/array output voltage V (k) and current I(k)

at the (k)th step.
Step 6: The tracker calculates the power at the (k)th step which is equal to P(k)

[= I(k) * V (k)].
Step 7: The tracker calculates the change in power �P [= P(k) − P(k − 1)].
Step 8: If �p = 0 (reaching MPP), the tracker stops perturbation, and if �p �= 0,

the tracker continues to next step.
Step8-a: If |�P/a(k − 1)| > ε, �P > 0, and (slope = +1), the tracker increases the

voltage with a new step size determined according to Eq. (10).
Hint: Slope dP/dV is the ratio between the change of output power and
the change of output voltage. If the slope is less than zero, the tracker will
assign−1 to the slope and if the slope exceeds zero, the tracker will assign
+1 to the slope.

Step8-b: If |�P/a(k − 1)| > ε, �P < 0, and slope = −1), the tracker decreases the
voltage with the new step size according to Eq. (10).

Step8-c: If |�P/a(k − 1)| < ε, �P > 0, and (slope = +1), the tracker increases the
voltage with the new step size according to Eq. (10) by increasing the duty
cycle as the type of the DC–DC converter is boost one.

Step8-d: If |�P/a(k − 1)| < ε, �P < 0, and (slope = −1), the tracker decreases the
voltage with the new step size according to Eq. (10).

Step 9: The tracker returns to step 1.

18 IP&OMethod [17]

Jung et al. proposed [17] an improved perturb-and-observe method, named (IP&O).
This method is based on the bandwidth of the module P–V curve. Figure 24 shows
the flowchart for this method.

Step 1: The tracker senses the module/array output current I(k − 1) and output
voltage V (k − 1) at the (k − 1)th step.

Step 2: The tracker calculates the output power at (k − 1)th, which is equal to
P(k − 1) [= V (k − 1) * I(k − 1)].

Step 3: The tracker calculates the maximum power by using Pmax = P(k −
1)/band.
Hint: Band is equal to V o.c minus twice the operating voltage V (k − 1).

Step 4: The tracker compares step #2 with step #3.
Step 4.1: If step #2 > step #3, the tracker goes to step #4.
Step 4.2: If step #2 = step #3, the tracker stops.
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Fig. 24 Flowchart of the method proposed in [17]

Step 4.3: If step #2 < step #3, the tracker decreases the operating voltage by decreas-
ing the duty cycle as the type of the DC–DC converter is boost one.

19 Two-Loop-Based P&O Proposed Method [18]

Chih-Chiang et al. proposed [18] a method based on the classical P&Omethod. This
method includes two loops. The first one is the irradiation loop to be applied under
non-uniform conditions. The second loop is the classical P&O loop to be applied
under uniform conditions. The switching between the two loops depends on the value
of the module output current. Figure 25 shows the flowchart for this method.

Step 1: Define the value of ε to the tracker.
Hint: ε refers to a certain value of current to be defined to the tracker for
detecting if there is a sudden change in irradiation level or not.

Step 2: The tracker senses the module/array output current I(k − 1) and output
voltage V (k − 1) at the (k − 1)th step.

Step 3: The tracker calculates the output power at the (k − 1)th step, which is
equal to P(k − 1) [= V (k − 1) * I(k − 1)].

Step 4: The tracker perturbs the voltage to be at the (k)th step.
Step 5: The tracker senses module/array output voltage V (k) and current I(k) at

the (k)th step.
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Fig. 25 Flowchart of the method proposed in [18]

Step 6: The tracker calculates the power at the (k)th step, which is equal to P(k)
[= I(k) * V (k)].

Step 7: The tracker calculates the change in current dI [= I(k) − I(k − 1)].
Step 8: The tracker calculates the change in voltage dV [= V (k) − V (k − 1)].
Step 9: The tracker calculates the change in power dP [= P(k) − P(k − 1)].
Step 10: If dI [= I(k) − I(k − 1)] > ε, the irradiation level increases and the

tracker increases voltage by decreasing the duty cycle as the type of the
DC–DC converter is buck one.

Step 11: If dI [= I(k) − I(k − 1)] < −ε, the irradiation level decreases and the
tracker decreases voltage by increasing the duty cycle.

Step 12: If abs dI [= I(k) − I(k − 1))] < ε, the tracker applies the classical P&O
method.

Step 12-a: If dP is positive and the voltage perturbation is positive, the tracker
decreases the duty cycle to increase the voltage.

Step 12-b: If dP is positive and the change in voltage perturbation is negative, the
tracker increases the duty cycle to decrease the voltage.

Step 12-c: If dP is negative and the change in voltage perturbation is positive, the
tracker increases the duty cycle to decrease the voltage.

Step 12-d: If dP is negative and the change in voltage perturbation is negative, the
tracker decreases the duty cycle to increase the voltage.

Step 13: If dP = 0 (reaching MPP), the tracker stops tracking, and if dP �= 0, the
tracker returns to step 1.
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20 Optimized Perturb-and-Observe Method (OP&O) [19]

Femia et al. proposed [19] an optimized P&O technique based on variable step size.
This technique tried to solve the problem of oscillation around the MPP which faces
the classical one. The tracker step size is adaptive according to the location of the
operating point.

21 Open-Circuit Voltage-Based Method [20]

Bennett et al. proposed [20] a modified P&Omethod based on solving two problems
facing the classical one. (i) Trade-off problem between its tracking speed and oscil-
lation amplitude at uniform irradiation level. (ii) Its failure in MPPT under increas-
ing/decreasing irradiation with slope. The complexity of the modified method is very
high. At open-circuit condition, the tracker makes the duty cycle equal to zero thus
making high power loss in the system.

22 An Optimized P&OMethod Based on Combination
with Other Method [21]

In 2016, Mohapatra et al. presented [21] a global approximation model for mapping
the input–output nonlinear relation of a PV array, where the solar irradiation and
ambient temperature are input variables. The current (IMPP) and voltage (VMPP)
values corresponding to the MPP were collected at different irradiation levels and
ambient temperature values. The collected data was utilized for training and testing a
back-propagation neural network (NN) to locate the MPP whatever the values of the
irradiation level and ambient temperature. The steady-state and dynamic efficiencies
of the proposed technique are equal to 96%.

23 An Adaptive P&OMethod [22]

Zakzouk et al. proposed [22] a modified P&O technique depending on a variable
perturbation stepduring suddenvariationof ambient temperature, beingdependent on
�P, voltage perturbation�V, and�P/�V. This is unlike the classical P&O technique,
which is dependent on the power change (�P) only. More detailed comparison is
given in Table 1.
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Table 1 Comparison between the proposed method and other modified MPPT algorithms under
sudden variation of solar irradiation as regards to the used sensor (s) as well as the steady-state and
dynamic efficiency values

References Sensor (s) Steady-state
efficiency

Dynamic
efficiency

Classical P&O
method

V and I 82–85% 82–85% Values reported in
publication [9] referred
to the paper

96% 91% Values reported in
publication [23]
referred to the paper

96.98% 91.90% Values evaluated by
simulation made by the
present authors

[4, 5] V and I 99.60% 99.60% Values reported in the
paper

[6] V and I 97.50% 95% Values evaluated by the
present authors from
paper results

[7] V and I 98.50% 96.10% Values evaluated by the
present authors from
paper results

[8] V and I 98.15% 96% Values evaluated by the
present authors from
paper results

[9] V and I 97% 95% Values reported in the
paper

[20] V and I 97.10% 96.33% Values evaluated by the
present authors from
paper results

[10] V and I Unjustified
hypothetical
value 400%

Unjustified
hypothetical
value 400%

Values evaluated by the
present authors from
paper result

[12] V and I 97% 92% Values evaluated by the
present authors from
paper results

[13] V and I 91% 91% Values evaluated by
simulation made by the
present authors

[14] V, I, temperature
and irradiation

90% 89% Values evaluated by the
present authors from
paper results

(continued)
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Table 1 (continued)

References Sensor (s) Steady-state
efficiency

Dynamic
efficiency

[16] V and I 97.30% 96.30% Values evaluated by the
present authors from
paper results

[17] V and I – – –

[18] V and I 83.60% 83.60% Values evaluated by
simulation made by the
present authors

[19] V and I Not available Not available –

[22] V and I 99.80% 99.80% Values reported in the
paper

[2] V and I 99.48% 98.03% Values reported in the
paper

24 Conclusions

The classical perturb-and-observe method may fail or deviate from tracking the
right direction to capture the correct maximum power point (MPP) of a PV module
exposed to a suddenly changed solar irradiation or ambient temperature. The classical
method fails to capture the MPP when the solar irradiation or ambient temperature
follows a ramp with different slopes. This is because the method can’t discriminate
whether the change in module power is due to its own voltage perturbation or due to
the change in the irradiation or ambient temperature level. Numerous approaches for
improving, adapting, and optimizing the classical P&Omethod have been published.
However, they differ in many aspects such as tracking speed, tracking accuracy,
steady-state efficiency, and dynamic efficiency as well as the number of used sensors,
complexity, and cost. This chapter is aimed at reviewing the challenges facing the
classical perturb-and-observe method in order to improve it under sudden and ramp
variations of irradiation levels and/or ambient temperature.
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Performance Analysis of Maximum
Power Point Tracking (MPPT) for PV
Systems Under Real Meteorological
Conditions

K. M. Abo-Al-Ez, S. S. Kaddah, S. Diab and El-H. Abdraboh

Abstract In this chapter, the performance of PV systems in terms of maximum
power point tracking (MPPT) is studied under the effect of different metrological
conditions.Due to the obscurity and lack of credible solar irradiation information, it is
important to estimate solar irradiation on horizontal and inclined surfaces by the use
of a mathematical model, which considers meteorological data of the location under
study. The proposed approach to develop this model is to estimate the global solar
radiation on the inclined PV array, then dividing it into its main components. Each of
the major metrological conditions affects the PV system performance by affecting a
particular component of the total irradiance reaching it. This is thoroughly analyzed
in detail in the sections of this chapter, mainly for partial shading conditions, angle
of incidence, air mass, and dust. After that, the effect of each of the metrological
conditions is modeled associated with a particular component of the global irradi-
ance. Then, an aggregated irradiance model incorporating the effects of all the major
metrological conditions is developed to show the reductions in the received irradi-
ance and the generated power. Lastly, this chapter proposes an improved maximum
power point tracking (MPPT) algorithm with variable step size, which is suitable for
multiple maximum power points occurring during partial shading conditions.

1 Overview

Solar energy is an everlasting energy that can play a major part in fulfilling a consid-
erable share of the global energy demand. African countries such as Egypt and South
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Africa have shining sun during summer and winter; therefore, the incident radiation
must be used for environmental and economic reasons. Photovoltaic (PV) systems
are largely employed for sustainable development of small urban communities in
the African continent, where access to energy resources of the main power grid is
almost impossible. Thus, the typical scenario of the PV system utilization in this
context is the smart microgrid model, where these systems are used for domestic
purposes such as water pumping and street lightening. The environmental benefits
by using PV systems for domestic applications instead of fossil fuel-based systems
are notable [1–3]. While the advantages of the PV powered systems make it a favor-
able option for rural areas, the deviation of its performance is unavoidable. This is
due to major metrological factors that seriously reduce the amount of the received
irradiance and thus reduce the output power. Those factors are partial shading condi-
tion (PSC), dust settlement on the PV array surface, air pollution, relative humidity,
angle of incidence, and air mass [4–8]. Stable and reliable operation of smart micro-
grids involving a considerable penetration level of PV systems is dependent upon
finding the maximum power point (MPP) with different metrological conditions.
Therefore, PV systems need to be designed properly considering site meteorological
characteristics in order to utilize these systems economically and efficiently [9–12].

Some recent research work has addressed the operation of PV systems under
different metrological conditions. Each of those metrological factors affects a certain
component of the irradiance, which reaches the PVmodule. The estimation of global
irradiance on inclined surfaces from meteorological data of site was presented in
[13–27]. The influence of the temperature and the irradiance was considered in the
developed mathematical models presented in [28–38]. The objective was to use
those models in developing control techniques for PV-islanded and grid-connected
operation. The partial shading conditionwas discussed in some recent research papers
[37, 39–55]. It was found that the partial shading factor has the worst effect on the
PV system performance, as it creates multiple maximum power points, which in turn
causes the malfunction of the conventional maximum power point tracking system
[56–58].

Although the models considered the temperature and the irradiance along with
the shading effect, other metrological factors were not considered. Other research
papers have expanded the modeling process to include more metrological factors as
discussed in [36, 59–61]. Those papers found that in actual installation, PV modules
operate at a broad extent of angles of incidence (AOI) and air mass (AM) values.
Although the accuracy of those models has increased, the dust effect was not con-
sidered. Therefore, the dust effect was studied and analyzed in [62, 63], as one of
the major factors causing the reduction of the transmittance of the PV system and
the reduction of the overall system efficiency. It focused on analyzing the negative
effects of dust density decomposition and the types of dust on the irradiance received
by PV modules and consequently on the PV performance. However, those models
did not incorporate the dust effect with other factors to show their combined effect.

To be able to study the irradiance received by a PV system under variable metro-
logical circumstances, it is essential to estimate the irradiance on inclined PV array
through an accurate model and dividing the global irradiance into its main compo-
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nents. After that, the effect of each of the metrological conditions is modeled on a
particular part of the irradiance, and an aggregated irradiance model that incorpo-
rates all the major metrological conditions is developed to assess the reduction in
the irradiance value received by a PV module, hence the deviation of the PV system
performance.

This chapter is organized as follows; Sect. 2 presents the estimation of the received
solar irradiation. Section 3 analyzes the effect of metrological conditions on the
PV system performance. This section starts with the PSC and its effect on the PV
system operation. Thereafter, Sect. 3 analyzes other affecting conditions mainly the
angle of incidence, the air mass, and the dust type. Section 4 presents an aggregated
irradiancemathematicalmodel under differentmetrological factors. Finally, inSect. 5
an improved maximum power point tracking algorithm is presented.

2 Estimation of the Received Solar Irradiance

Tomodel the different metrological conditions affecting the PV system performance,
mainly the performance related to tracking the maximum power produced, an accu-
rate estimation of each part of the global irradiance on the inclined PV array has to be
done, and then insert the effect of each metrological factor on a particular component
of the global irradiance.

The proposed algorithmshown inFig. 1 estimates the hourly irradiance on inclined
surface for a particular day, knowing only the site meteorological parameters such
as latitude (L), sun duration (S/So), mean sea level pressure (MSL), water vapor
pressure (V ), temperature (T ), and relative humidity (RH).

The first step is using two different empirical models to estimate the value of
the irradiation on horizontal surfaces H̄ taking into consideration the effect of the
meteorological parameters for the site under study. Then divide the value of H̄ into the
beam irradiation (H̄B) and the diffuse irradiation (H̄D) components. After that, the
irradiation on inclined surface (H̄T ), its diffused component (H̄DT ), beamcomponent
(H̄BT ), and reflected component (H̄RT ) are estimated on different orientations using
isotropic and anisotropic models.

2.1 Estimation of Irradiation on Horizontal Surface

For estimating the irradiation on horizontal surface, the day considered is the day
when the solar declination angle (δ) is equal to the angular tilt average of the month.
The recommended day for each month is given in Table 1 [15, 17, 18]. There are
several empirical models using meteorological parameters at different sites, which
can be used for estimating the value of H̄ as shown in the following two models:
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Estimating ( in (kwh/m2/day) using empirical models

Estimating ( ) and beam ( ) in (kwh/m2/day) from ( ) through  and 

Estimating ( , , and ) in (kwh/m2/day) based on( ,
and ) through isotropic and anisotropic models. Then select the optimum 

tracking strategy in (w/m2)

INPUT DATA: Meteorological data of site

Fig. 1 Proposed algorithm for estimating Geometric relationshipsH̄T

Table 1 Average day and corresponding δ each month

Month Date Day number in year δ (degree)

January 17 17 −20.9

February 16 47 −13.0

March 16 75 −2.4

April 15 105 9.4

May 15 135 18.8

June 11 162 23.1

July 17 198 21.2

August 16 228 13.5

September 15 258 2.2

October 15 288 −9.6

November 14 318 −18.9

December 10 344 −23.0
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• Model (1):

The sunshine duration data based on Angström model [13, 16, 17, 19, 20] are given
as:

H̄ = H̄o × {
A + B

(
S̄/S̄o

)}
(1)

S̄o = 2

15
cos−1(− tan φ tan δ) (2)

where A and B are constants that are 0.295 and 0.423, respectively; φ is the latitude,
and it is 31.07 (degree) for Al-Arish site in Egypt [13].

• Model (2):

The MSL, V, T, and RH were added to the model of Angström as discussed in [15],
and it is given as follows:

H̄ = H̄o × {
a + b

(
S̄/S̄o

) + cT + dV + eRH + f P
}

(3)

H̄o = 24 × 3.6H̄on

π

(
cosφ cos δ sinωs + πωs

180
sin φ sin δ

)
(4)

H̄on = Sc

[
1 + 0.033 cos

(
360 n

365

)]
(5)

ωs = cos−1(− tan(Φ) × tan(δ)) (6)

where

a = 0.129, b = 0.382,

c = −0.009, d = −0.001, e = 0, f = 0

H̄o The monthly average daily irradiation of horizontal
surfaces (kwh/m2/day)

H̄on The corresponding normal component

Sc Solar constant = 1367 W/m2

n The day number in the year

ωs The sunshine hour angle in degrees

The meteorological data for Al-Arish are given in Table 2 [15].
The value of H̄ for Al-Arish city is calculated through the previously explained

two models, and the results are compared with the measured values as shown in
Fig. 2.
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Table 2 Meteorological data for Al-Arish city

Month S̄ T(
◦
C) V (hpa) MSL (hpa) R (%)

January 7.6 20.1 11.4 1018.1 74.0

February 7.9 17.8 9.5 1021.0 67.3

March 8.5 19.7 10.6 1015.2 66.7

April 9.5 23.5 11.3 1015.2 59.3

May 11.3 27.0 16.5 1014.2 70.0

June 12.6 29.0 19.0 1012.0 70.0

July 12.0 32.2 23.8 1009.2 70.0

August 11.9 30.5 23.5 1010.2 71.7

September 10.7 29.8 20.8 1012.5 68.7

October 9.50 25.5 19.6 1013.2 73.5

November 8.50 21.1 15.4 1014.9 72.3

December 7.70 19.0 11.6 1018.8 71.0

Mean 9.81 24.6 16.08 1014.54 69.54
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Fig. 2 Comparison between measured and estimated H̄
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Fig. 3 Geometric relationships between a horizontal and the incoming beam where �z—Zenith
angle, angle between the vertical and the line to the sun; αs—solar altitude angle, complement of
the zenith angle; and γs—solar azimuth angle, angular displacement from south of the projection
of the solar ray on the horizontal plane

The accuracy of the two models is assessed through the mean relative deviation
(MRD) between the measured and the estimated values as shown [20]:

MRD = 1

12

12∑

i=1

H̄i,measured − H̄i,estimated

H̄i,measured
× 100 (7)

From the results, MRD for model (1) is 7.2864% and MRD for model (2) is
2.4522%. The least MRD is with model (2), so it is more accurate. In addition, it
is noted that model (2) permits including several meteorological parameters, which
may change under different conditions.

2.2 Estimation of Daily Global Irradiation on Inclined
Surface

The geometric relationships between the horizontal and the incoming solar ray, that
is, the position of the solar ray relative to that surface, can be described in terms of
several angles as shown in Fig. 3 [17].

The geometric relationships between an inclined surface and the incoming solar
ray can be described in terms of several angles as shown in Fig. 4 [18].

The irradiance on inclined surface consists of three parts, namely beam or direct,
diffused, and reflected components. To be able to estimate H̄T , the first step is to
estimate the H̄B and H̄D , since the reflected part equals zero on horizontal surface.

The value of H̄D and H̄B can be calculated through the monthly average daily
cloudiness index as presented in Eq. (8) [17, 21–23]:
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Fig. 4 Geometrical configuration of PV module on inclined surface where γ—surface azimuth
angle, −180° ≤ γ ≤ 180°; θ—angle of incidence, angle between the solar ray on a surface and the
normal to that surface [degree]; and B—the slope, 0° ≤ β ≤ 180°

H̄D = H̄ × K̄D (8)

The value of K̄D is estimated by correlating it to the clearness index K̄T (which
is H̄/H̄o). There are several models that correlate K̄D to K̄T each based on data
collected from several stations. But all the estimated correlations were found to be
almost similar to eachother andonlydependon the season [17]. Suggested correlation
of K̄D versus K̄T and sunset hour angle for the tilted angle (ω′

s degree) are estimated
according to Erbs as follows [17, 19, 21, 22]:

ω′
s = min

(
cos−1[− tan(θ) ∗ tan(δ)]

cos−1[− tan(ϕ − β) ∗ tan(δ)]

)
(9)

For ωs ≤ 81.4 and 0.3 ≤ K̄T ≤ 0.8

K̄D = 1.391 − 3.560K̄T + 4.189K̄ 2
T − 2.137K̄ 3

T (10)

And for ωs > 81.4
◦
and 0.3 ≤ K̄T ≤ 0.8

K̄D = 1.311 − 3.022K̄T + 3.427K̄ 2
T − 1.821K̄ 3

T (11)

H̄B = H̄ − H̄D (12)

The values of H̄T and its components are calculated as given in [17–19, 23, 24]
as follows:
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Fig. 5 Distribution of
diffuse irradiation

H̄T = H̄BT + H̄RT + H̄DT (13)

H̄BT = H̄B × R̄B (14)

R̄B = cos(ϕ − β) cos δ sinω′
s + (

π
180

)
ω′
s sin(ϕ − β) sin δ

cosϕ cos δ sinωs + (
π
180

)
ωs sin ϕ sin δ

(15)

H̄RT = H̄ × R̄R (16)

R̄R = ρ × 1 − cosβ

2
(17)

H̄DT = H̄D × R̄D (18)

where

R̄B solar ray geometric tilt factor
ρ the solar reflectivity index, and it is assumed to be = 0.2
R̄D the monthly average daily diffuse geometric tilt factor
Φ the latitude, −90° ≤ ϕ ≤ 90°.

Diffuse irradiation on inclined surface includes three components, namely
isotropic (H̄DT,iso), circumsolar (H̄DT,cs), and horizon (H̄DT,hz). Distribution of dif-
fuse irradiation showing its three parts as adapted from Perez et al. is shown in Fig. 5
[17]. There are several models as Lui and Jordan model which estimates (H̄DT,iso)

only, Hay and Davis model which estimates both (H̄DT,iso) and (H̄DT,cs), and HDKR
model which estimates the three components of diffused irradiance [17, 22, 23]. So,
HDKR model will be considered in this study. The formulation for this model is
given below.
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• HDKR model formulation:

H̄DT = H̄DT,iso + H̄DT,cs + H̄DT,hz (19)

R̄D =
{
(1 − Ai )

(
1 + cosβ

2

) [
1 + f sin3

(
β

2

)]
+ Ai R̄B

}
(20)

f =
√

H̄B

H̄
(21)

Ai = H̄B

H̄0
(22)

From Eqs. (18) and (20), the value of H̄DT , given by Eq. (19), becomes as:

H̄DT = H̄D ×
{
(1 − Ai )

(
1 + cosβ

2

) [
1 + f sin3

(
β

2

)]
+ Ai RB

}
(23)

The three models are applied using MATLAB to estimate diffuse and global
irradiation on inclined surface, and results are shown in Fig. 6.

From results shown in Fig. 7, the HDKR model estimates all the components of
diffuse component and gives the highest value for the irradiation on inclined surface,
followed by Hay and Davis model and Liu and Jordan model, respectively.

The MRD of H̄DT estimated by each of Lui and Jordan model and Hay and Davis
model from that estimated by HDKR model is 14.2465 and 1.2430%, respectively.
The MRD for H̄T for each of Lui and Jordan model and Hay and Davis model from
HDKRmodel is 3.9313 and 0.3466%, respectively. Themonthly average daily global
irradiation on inclined surface is estimated based on HDKRmodel through Eq. (24):

H̄T = (
H̄B + H̄D Ai

)
R̄B + H̄D(1 − Ai )

(
1 + cosβ

2

)[
1 + f sin3

(
β

2

)]

+ H̄ρ

(
1 − cosβ

2

)
(24)

The step following the selection of HDKRmodel to estimate the monthly average
daily global irradiation on inclined surface is to select the optimum tracking strategy,
which leads to increase the irradiance received on the PV array surface along all the
days of the year for a given site under study. There are several tracking strategies,
such as the annual strategy [23], the seasonal strategy [17, 26], and the daily strategy
[17, 19, 25, 26].

For a PVmodule rotated about a horizontal east–west axiswith a daily adjustment,
the angle of incident is expressed as [17, 19]:

cos θ = sin2 δ + cos2 δ cosω (25)
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Fig. 7 Estimated (H̄T ) under different tracking strategies

ω = (t − 12) × 15 (26)

β = |φ − δ| (27)

γ =
{
0◦ if φ − δ > 0
180◦ if φ − δ ≤ 0

(28)

where ω is the sun hour angle (degree).
The solar irradiation values received on a tilted PV array at different tilt angles

are estimated through a developed MATLAB model using Eq. (24). The values of
irradiation received on inclined plane H̄T are estimated when received on differ-
ent tilt angles. These tilt angles are derived based on different tracking strategies,
namely seasonal, daily, and annual. These values of H̄T are compared with the daily
irradiation received on horizontal plane H̄ , and results of comparison are shown in
Fig. 8.

Relative increase in irradiance received due to different tracking strategies and
results are given in Table 3.

From results shown in Fig. 7 and Table 3, the daily optimal tilt angle leads to the
maximum values of irradiation received along the months of the year.
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Shaded modules

Partially illuminated string

Fully illuminated string

Total current produced by the array

Current produced by fully illuminated string

Current absorbed by partially 
illuminated string

Blocking diode cause zero current 
absorption

Fig. 8 PV array under partial shading through passing clouds

Table 3 Relative increase in
H̄T from H̄

Tracking strategy Relative increase %

Annual optimal 16.42

Seasonal optimal 22.68

Daily optimal 24.38

3 Effect of Metrological Conditions on PV System
Performance

Metrological conditions cause performance deviation of PV systems and havemutual
effect on each other. The main metrological condition affecting the performance of
PV systems is the partial shading condition (PSC). Other conditions that of signifi-
cance are dust settlement on the PV array surface, angle of incidence, and air mass.
In this section, the focus is on the PSC, and the effect of other conditions is presented
briefly.

3.1 Partial Shading Condition (PSC)

PSC can occur due to shading from tree leaves falling over cells, birds or bird litters
on cells, or soft shading due to neighboring buildings or arrays or passing clouds.
When PSC occurs, the consequences are as follows:

1. The shaded area passes currents higher than their short-circuit current in the
reverse direction as shown in Fig. 9; hence, it operates in consuming mode rather
than generating mode unless blocking diodes are inserted [42, 52].
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Fig. 9 Equivalent circuit of PV module partially shaded

2. The array partially shaded has several peaks in its P–V characteristic curve, and
the traditionally tracking methods will fail to track maximum output power with
them [43–48].

3. If excessive reverse bias voltage occurs, due to high shading ratios, the internal
diode of the module shown in Fig. 9 offers high resistance creating an open
circuit in the entire PV module causing hot spot point, which can damage the
diode itself [42].

The irradiance received by the PV module H̄T is composed of direct or beamHB,
diffuse HD, and reflected HR components. Also, the diffuse component is composed
of isotropicH ISO

D and circumsolarHCIR
D and horizonHHZ

D components. Nevertheless,
the effective shading ratios are applied only to the direct component and circumsolar
part of diffuse [49, 53]. The PV module type, which is considered in this study, is
Bpsx3150 W module with specifications given in [61].

The irradiance H̄T,sh received by cells, which are shaded by different shading
ratios of Sh (referring to the percentage area of the cell, which is shaded), can be
calculated from Eq. (29) [45, 48, 49]:

H̄T,sh = (H̄DT,cs + H̄BT )(1 − Sh) + H̄DT,iso + H̄DT,hz + H̄RT (29)

In addition, the value of H̄T,sh at different shading ratios is simulated in Fig. 10.
At 17 January in Al-Arish city, the shading effect is studied with different shading
ratios. The shading factor F is calculated from Eq. (30) [39, 48, 53], and it can be
used to estimate ISC under PSC.

F = H̄T,Sh

H̄T
= Isc, sh

Isc
(30)
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Fig. 10 Irradiance received H̄T,sh in (w/m2) at different shading ratios

As more of the module gets shaded, the system shows multiple maximum power
points, making identification of the real one difficult for traditional trackers, and
potentially leads to oscillations about MPP or other undesirable behaviors as simu-
lated in Fig. 11.

3.2 Effect of Other Metrological Conditions

3.2.1 Angle of Incidence (AOI)

The angle of incidence (AOI) is the angle between the incident solar ray on a PV array
and the normal to the array. The AOI influences the irradiance value received by a
PVmodule by what so-called the optical effect which accounts for reflectivity losses
[4, 5]. The irradiance received by the PV module considering AOI effect, ĪT (AOI),
can be calculated by the following steps as given in [4, 5]:

ĪT (AOI) = [
f1(AOI) × ĪBT

] + fd × ĪDT (31)

A fifth-order regression is used to determine f1(AOI) which is given as follows
[59]:
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Fig. 11 I–V and P–V c/cs of
PV module under PSC
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f1(AOI) = b0 + b1 + AOI + b2(AOI)
2 + b3(AOI)

3 + b4(AOI)
4 + b5(AOI)

5

(32)

where fd is the fraction of diffuse irradiance used by module, typically assumed =
1; b0, b1, b2, b3, b4, b5 are constants given in Table 4 [4].

For both the day and site under study, the AOI effect on the irradiance received by
PV module when it is placed on both horizontal plane and inclined at daily optimal
tilt angle plane is simulated and results are shown in Fig. 13 compared to that received
irradiance without the AOI effect. From Fig. 12, it can be noted that the AOI effect
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Table 4 Polynomial coefficients for AOI

b0 b1 b2 b3 b4 b5

1.0 −2.438e−3 3.103e−4 −1.246e−5 2.112e−7 −1.359e−9
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Fig. 12 Irradiance received by horizontal and tilted PV module with AOI effect

is not obvious for the inclined surface because the AOI result was less than 60°.
However, this effect was obvious with larger values of AOI resulted in case of the
horizontal surface.

3.2.2 Effect of Air Mass (AM)

Air mass (AM) is relative trajectory index that the solar beam has to travel through
the atmosphere before arriving to the land. An AM = 1 when the sun is directly
overhead at a sea level site (at noon); AM = 10 or greater near sunrise and sunset
[5, 61]. The irradiance received by the PV module with air mass effect can be calcu-
lated by Eq. (33) [5].

ĪT (AM) = ĪT × f2(AMa) (33)

A fourth-order regression is used to determine the air mass function f2(AMa).
The values of the polynomial coefficients are provided in [61] and expressed as:

f2(AMa) = a0 + a1�AMa + a2(AMa)
2 + a3(AMa)

3 + a4(AMa)
4 (34)
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Table 5 Sandia polynomial coefficients for AM

PV module a0 a1 a2 a3 a4

Bp sx3150 0.9415 0.05272800 −0.009588 0.00067629 −1.8111E−05

Uni-solar US-21 1.0470 0.00082115 −0.025900 0.00317360 0.00011026
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Fig. 13 Irradiance received by different types of PV module with AM effect

where a0, a1, a2, a3, a4, a5 are constants based on PV type and given in Table 5 [61].
For the day and site under study, the received irradiance with AM effect for

different types of PV arrays along day hours is shown in Fig. 13.
From Fig. 13, the manufacturing material of the PV array is affecting the amount

of reduction in the received irradiance when AM effect is considered.

3.2.3 Effect of Dust Type

Different types of dust such as red soil, limestone, and flying ash affect the received
irradiance. A reliable and practical relation developed to study the dust-type effect on
maximum power extracted Pmax from PV systems is given in [63]. Pmax is directly
proportional to the solar irradiance as explained in [59]. The dust coefficient “Aj” is
given in Table 6 [63]. When considering a dust density of 0.63 gm/m2 of different
dust types, both the irradiance received by PV module and the power output from it
are simulated and shown in Fig. 14. The irradiance received by the PVmodule under
dust effect can be calculated as:
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Table 6 Coefficient of
standard deviation for
different dust types

Pollutant A j

Ash 0.06 ± 0. 024

Limestone 0.10 ± 0. 034

Red soil 0.24 ± 0. 085
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Fig. 14 Irradiance received and power extracted by clean and dusty surface

ĪT
(
Dust j

) = ĪT (Clean) · e−Aj�Mj (35)

From the simulation results shown in Fig. 14, it is obvious that the red soil dust
causes the most severe performance deviation the PV array, and then comes the
limestone, and the least effect is caused by ash.

4 Aggregated Irradiance Model Under Different
Metrological Conditions

It is essential to combine those effects in an aggregated model that can accurately
describe the irradiance received by a PV module for one or more of those factors.

The performance of a PV module shows deviation under different ambient fac-
tors discussed in the previous section. It is essential to combine those effects in an
aggregated detailed model that can accurately describe the irradiance received by a
PV module for one or more of those factors.
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Table 7 Pmax at noon considering different metrological conditions

Measured values AOI Air mass Dust PSC All conditions

Isc(A) 3.6038 3.6195 3.4718 2.8301 2.7840

Pmax(w) 113.7341 114.2304 109.5540 89.2539 87.7972

PR(%) 0 −0.4 3.675 21.5 24.775

The following steps show how the model is derived:

• Insert the shading effect:

ĪT (sh) = (1 − sh)( ĪBT + ĪDT,cir) + ĪDT,iso + ĪRT (36)

• Add the AM effect to Eq.(3.36) as follows:

ĪT (sh,AOI) = (1 − sh)( ĪBT × f2(AOI) + ĪDT,cir) + ĪDT,iso + ĪRT (37)

• Add the AM effect to Eq. (3.37) as follows:

ĪT (sh,AOI,AMA) = f1(AMa)
[
(1 − sh)

(
ĪBT × f2(AOI) + ĪDT,cir

) + ĪDT,iso + ĪRT
]

(38)

• Add the dust effect to Eq. (3.38) to get the aggregated model:

ĪT (All) = [ĪT(sh,AOI,AMA)].e−Aj�Mj (39)

In a proposed scenario, consider PV module protected by two bypass diodes that
one cell inside it is under PSC of 25%, and also a density of 0.63 gm/m2 of ash dust is
deposited on it. Consider both AM and AOI effects for site and day under study. The
simulated irradiance received considering each of these metrological conditions sep-
arately with the other conditions deactivated and then with all conditions integrated
is shown in Fig. 15. Also, Pmax at noon is simulated in Table 7.

Taking the metrological conditions’ effect into consideration shows a serious
decrease in the value of the irradiance received by the PV system; hence, the produced
PV power is severely decreased.

From results in Table 7, it can be noted that there is an important deviation in the
performance after considering all the metrological factors. The negative sign noted
when considering AM effect means that the power increased.
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Fig. 15 Irradiance received by PV module under different ambient factors

5 Improved PV Maximum Power Point Tracking

The MPPT systems use controller to implement defined algorithms to extract maxi-
mum power from PV system. Among several MPPT algorithms, the most used and
famous algorithms are perturb and observe (P&O) and incremental conductance (IC)
methods. It was found that the tracking methods depending on P&O algorithms are
widely applied due to their speed and simplicity. Also, they can be implemented
using cheap digital devices with high tracking efficiency that could reach 93% under
normal conditions [64, 65].

The principle of P&O algorithm is to perturb the operating voltage by a defined
step size �V and observe the power variation �P . If it was positive, so the voltage
should be perturbed, else the perturbation direction should be altered to the opposite
direction [66]. The most important disadvantage in P&O method is that it oscil-
lates around the maximum power point. In addition, it shows erratic behavior when
operating under rapid change of irradiance.

Assume that the operating point is perturbed around MPP at the lower irradiance
level as shown in Fig. 16. Then, the irradiance increased rapidly to the next higher
level, the observed �P will be positive, the MPPT is in the right direction, and
the operating point will move from point A to B instead of considering that this is
happening because of the irradiance increase. If the irradiance continues to increase
rapidly, the MPPT will observe positive measured �P, when the operating point is
perturbed from right to left, will consider that this is happening because of getting
closer to the MPP and not because of irradiance increase, and will move to point C
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Fig. 16 Erratic behavior of P&O method

and then D, respectively, and this will cause the operating point to continue deviation
from actual MPP until the irradiance settles down or changes slowly.

The incremental conductance (IC) algorithm solves the problem of mal-operation
of P&O algorithm under rapid irradiance change. It is based on defining the location
of the MPP by calculating the slope of the power voltage curve [67].

A scenario of irradiance along day hours of the site under study, which is gradually
changing, is shown in Fig. 17, and will be used to study the efficiency of different
MPPT algorithms. Both P&O and IC methods are implemented for the scenario of
irradiance under study, and the results are shown in Fig. 18.

From Fig. 18, it can be noted that the performance of both methods is the same
under the case of gradual change in irradiance. In this work, improvements of the
classic P&O algorithm are proposed to overcome the previously mentioned draw-
backs. The improvements applied to classic P&O algorithm are listed as follows:

• For the oscillations around MPP, small step size will minimize the oscillation but
causes slow MPPT. So, a variable step size will be used instead of a fixed step
size and the perturbation of voltage is selected to be proportional to the change in
power [64, 68]

V ∗
ref = Vref + C ∗ �P

�V
(40)
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Fig. 17 Gradually changing irradiance in a cloudy day
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Fig. 19 Algorithm of improved P&O method

where Vref is the reference voltage of the MPP; C is a PV constant that depends on
manufacturer.

• In order to increase the tracking speed and to solve the failure of P&O under rapid
changes of irradiance, the following improvement is done. Since the open-circuit
voltage Voc is affected by variation of irradiance and temperature, the reference
voltage is set to a fraction of open-circuit voltage to check periodically the change
in the irradiance and compensate for this change, as follows:

Vref = Koc ∗ Voc (41)

where Koc is the proportionality constant for open-circuit voltage and ranges between
0.71 and 0.78 [38, 65]. The improved algorithm is shown in Fig. 19.

Simulation results for irradiance profile of Fig. 18 with the improved MPPT
algorithm are shown in Fig. 20.

From results shown in Fig. 20, it is noted that the oscillations around MPP are
almost vanished. Tracking efficiency is the ratio between MPP reached by tracking
system and theoretical MPP at the same condition [65]. Figure 21 shows the MPP
when implementing both classic and improved P&O algorithms and comparing them
with the theoretically calculated MPP. From results shown in Fig. 21, it is noted that
the tracking efficiency increased from 88% with classic P&O to 99% with improved
P&O under steady-state condition.



Performance Analysis of Maximum Power Point Tracking (MPPT) … 223

N

Y

Y N

Star

Input PV array parameters

Input  Step size voltage of 
MPPT controller

Measure both operating voltage, current 
and open circuit voltage of array 

Determine &

Determine       

If
Partial shading case

MPPT controller adjusts 
operating voltage till  is 

reached to extract maximum 

ΔP>

ΔVΔV

Update 
history 

MPPT controller adjusts 
operating voltage till is 

N Y

N

Y

Fig. 20 Simulation of MPP using improved P&O method



224 K. M. Abo-Al-Ez et al.

Fig. 21 MPP for classic and
improved P&O method
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The third improvement is essential to solve the MPPT failure under PSC. PSC is
mathematically checked through the following models [56, 57]:

�V = V (k) − V (k − 1) < �VSET (42)

I = I (k) − I (k − 1)

I (k − 1)
< �ISET = I (k)

NP
(43)

where k is the sampling number; NP and Ns are the numbers of parallel and series
modules in array, respectively; �VSET is the step size of voltage (v).

If the two conditions in Eqs. (42) and (43) are satisfied, the reference voltage of
MPP is changed according to the following model:

Vref = V ∗
PSC = NsM × VocM

NPM × IscM
× I (k) (44)

where V ∗
PSC is the reference voltage of the MPP under PSC (v); VocM is the module

open-circuit voltage (v); IscM is the module short-circuit current (A).
Consider one module protected by two diodes under PSC of one cell by 75%, and

the c/cs of this module and the simulation of the performance using both the classic
and the improved P&O methods are simulated as shown in Fig. 22.

Under uniform illumination, the MPP is P(n). The classic P&O under PSC shifts
the operating point to the local MPP at the same maximum power point voltage, Vref,
and the resultedMPP is 46.26 (w).Whereas the improved P&Omoves the maximum
power point voltage to V ∗

PSC, then the improved algorithm of P&O continues the
tracking with variable step size of perturbation till the global MPP is reached at
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Fig. 22 I–V and P–V c/cs for improved P&O MPPT algorithm under PSC

56.86 (w). From Fig. 22, it is evident that the improved P&O increases the tracking
efficiency under PSC to be 99.9% where it is 81.35% for classic P&O.

6 Conclusions

This chapter investigated the challenges facing the implementation of widespread
stand-alone photovoltaic systems in smart microgrids. The first challenge was devel-
oping a proposed algorithm for estimating the irradiance received by an inclined PV
module from daily estimations knowing only the meteorological data for the site.
The second contribution was developing an aggregated irradiance model consider-
ing different metrological factors, to study the irradiance value received under real
installation conditions. The third contribution was the development of an improved
P&O MPPT algorithm with variable step size to solve the problems of the classic
P&O method, which are mainly the oscillations around MPP, the failure of tracking
under rapid changes of irradiance, and the mal-operation under PSC.
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ANN and Multiple Linear Regression
Based Modelling for Experimental
Investigation of Photovoltaic Module
Maximum Power Production Under
Outdoor Condition of Mountainous
Region

Amit Kumar Yadav and Hasmat Malik

Abstract Manufacturer gives photovoltaic (PV) module rating in standard test con-
ditions (STC) which incorporate solar radiation (SR), temperature 1000 W/m2 and
25 °C, respectively. These STC hardly happen in outside conditions; thus, this study
presents experimentation analysis of 74 Wp PV module, and maximum power and
performance degradation are calculated. Based on experimental data, multiple linear
regression (MLR) and artificial neural network (ANN) models are created using dif-
ferent input variables. Mean square error in ANNmodel is measured by performance
plot. It is found that ANN furnishes improved result thanMLR. The new correlations
of PV maximum power are developed in terms of solar radiation (SR), short-circuit
current (Isc) and open-circuit voltage (V oc), which can be used to estimate maxi-
mum power of 74 Wp in mountainous regions of India. The performance ratio of 74
Wp multi-crystalline PV module is found to be 70%. The SR varies from 119.8 to
415.6 W/m2, and maximum power, Isc and V oc vary from 28.22 to 42.72 W, from
1.78 to 4.90 A and from 20.18 V to 20.96 V, respectively.
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Fig. 1 Solar cell circuit

1 Introduction

Due to environmental concern and decreasing nature of conventional energy sources,
renewable energy sources (RESs) have drawn attention worldwide. Among RESs,
solar energy has huge potential and is converted into electricity due to photovoltaic
effect by photovoltaic (PV) module [1].

PVmodules consist of solar cell which follows nonlinear electrical characteristics.
It is dependent on cell temperature and solar radiation. The solar cell circuit diagram
with one diode is shown in Fig. 1, and its I − V curve is expressed as follows:

i = iL − io

{
exp

(
q

akTc
(v + irs)

)
− 1

}
− v + irs

rsh
(1)

where io is reverse saturation current of diode, iL is photon current, q is electron
charge, a is ideality factor, k is Boltzmann constant, Tc is cell temperature, rsh is
shunt resistance that has large value and rs is series resistance that has small value,
so it cannot be taken in the analysis.

Solar radiation (SR) and ambient temperature affect PV power which varies for
different sites which require modelling of PV cells and modules. Moreover, testing
condition of PV module is given under STC which rarely occurs outdoor. Therefore,
to predict PV power of outdoor condition becomes an important issue. On this aspect,
several authors used ANN to model PV system for different variables’ prediction
[2–27]. In a study performed by Yadav and Chandel [28], experimental analysis of
PV module’s electrical characteristics under outdoor conditions for different Indian
sites remains a major research gap which is carried out in this study. Based on
experimental readings, prediction accuracy of ANN models is evaluated.
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2 Proposed Approach

Theproposed approach for power productionof aPVmodule under outdoor condition
of mountainous region is presented in Fig. 2, which shows the complete procedure
for forecasting of PV module power. The proposed approach includes the twelve
basic steps to perform the forecasting of PV module power (Pmax). These steps are
explained in detail as given below:

Step 1: Develop the experimentation setup for the study.
Step 2: After proper development of experimentation, measure the I–V curve, Voc,
Isc and SR for further study.
Step 3: Calculate the PV module maximum power (Pmax) as per recorded dataset.
Step 4: After the computation of Pmax, prepare the dataset for the development of
ANNs model.
Step 5: Prepare the training and testing dataset files for further utilization.
Step 6: Design the ANNs models by using training dataset.
Step 7: Train the ANNs models as per set value of hidden layer neurons of each
model.
Step 8: Compute the ANNs model’s performance measures (i.e. MAPE).
Step 9: Compare the computed MAPE value with standard MAPE value which is
MAPE < 10
if Yes: go to Step 10
if No: go back at Step 6 (at Step 6, change themodel parameters, hidden layer neurons,
etc.).
Step 10: Test the model with unknown dataset. Both testing dataset and training
datasets are different.
Step 11: After successful testing, predict the Pmax.
Step 12: Save the model for future purpose applications.

The detail explanation related to each step of the presented proposed approach has
been presented in subsequent sections. In that subsequent sections, the PV module
parameters used for the study, experimentation procedure, site location, ANN archi-
tecture and performance analysis (energy generated, yield and performance ratio)
have been explained in detail which are very useful for the researchers.

3 PV Module Parameters

A 74 Wp Si multi-crystalline PV module is experimented. The measuring instru-
ments are digital multimeter with DC accuracy:±0.5%+ 3 digits and AC accuracy:
±1%+ 3 digits and auto digital lux meter with measuring range varying from 2000
to 50,000 lx which are utilized for measuring I–V. The measurement under STC
provided by manufacturer Sova Power is given in Table 1.
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Fig. 2 Proposed approach
for forecasting of power
production (Pmax) of a PV
module under outdoor
conditions
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Table 1 74 Wp PV module as per manufacturer data at STC

PV module characteristics Manufacturer data

Module type SS 74P

Maximum value of power (Pmax) 74 W

Voltage at maximum power (Vmp) 17.86 V

Current at maximum power (Imp) 4.19 A

Open-circuit voltage (Voc) 21.89 V

Short-circuit current (Isc) 4.48 A

Cell efficiency (%) 13.7

Module efficiency (%) 11.9

Fig. 3 Experiment setup

4 Experimentation

I–V curve measurement of 74 Wp PV module which is carried out at National
Institute of Technology (NIT) Sikkim, India, is shown in Fig. 3, and solar radiation
measurement is shown in Fig. 4. The experiments are performed in sunny day at
different time periods in the month of April. The lux meter is used to measure solar
radiation intensity, and conversion formula lumen

watt = 2.732 is used for wavelength
420 nm [29].
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Fig. 4 Lux meter reading

Site Location

NIT Sikkim, India (Latitude: 27.29°N, Longitude: 88.35°E), is located in Ravangla,
Barfung Block, South Sikkim (Fig. 5). Ravangla or Rawangla or Ravongla is a small
tourist town situated at an elevation of 2133.6 m in South Sikkim district of the
Indian state of Sikkim. The average temperature and rainfall are 14.0 °C and 2.43 m
length, respectively. Throughout the year, temperatures vary by 11.6 °C. The average
solar radiation intensities are of about 4.79 KWh/m2/day approximately. The wind
speed of this area is normal mostly above the optimum level (4.1 m/s). But during
the months April to July, it gets a favourable wind speed (max 5.88 m/s).
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Fig. 5 Location map of Sikkim in India

5 Artificial Neural Network

ANNs are information processing systems, implemented and constructed to model
the human brain. ANN performs data clustering, approximation, vector quantization,
optimization function, classification and pattern matching. ANN consists of nodes
or units or neurons configured in regular architectures and operates in parallel. ANN
involves input, hidden and output layers (Fig. 6). Calculation of hidden neurons is
given in Refs. [30, 31].

Fig. 6 ANN architecture
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6 PV Performance Analysis

The total energy generated daily
(
Energy(ac,d)

)
and monthly

(
Energy(ac,m)

)
by the

PV system [32, 33] is given as follows:

Energy(ac,d) =
24∑
t=1

E(ac, t) (4)

Energy(ac,m) =
n∑

d=1

E(ac, d) (5)

where n is days in month and Energy(ac, t) is the instantaneous measured value.

Yield and Performance Ratio

Performance ratio (PR), final yield (YF) and reference yield (YR) are given by the
following equations.

YF = Eac

PPV,Rated
(6)

YR = Ht (kWh/m2)

G (kW/m2)
(7)

where Ht (kWh/m2) is total in-plane SR and G is reference SR and its value is
1 kW/m2

PR = YF
YR

(8)

PR indicates performance loss year-wise.

7 Results and Discussion

The reading for I–V characteristics for 74 Wp PV module under outdoor condition
for different time periods on 14April 2017 is shown in Fig. 7, andmaximum power is
given in Table 2. ANN models’ prediction accuracy is calculated with MAPE given
by Lewis [34].

ANN-1, ANN-2 and ANN-3 models are created using MATLAB software (R
2011a), and training algorithm used is Levenberg–Marquardt (LM) algorithm. The
input variables for ANN-1, ANN-2 and ANN-3 are SR, V oc and Isc, respectively.
The output variable for all ANN models is maximum power. Twelve data points are
used for training, and four data points are utilized for testing. ANN-1, ANN-2 and
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Fig. 7 I–V characteristics at different time periods and solar radiation

ANN-3 performance plots are shown in Fig. 8, which represents that mean square
error is decreasing with increasing epoch number.

The fit plots of ANN-1, ANN-2 and ANN-3 are shown in Fig. 9. The fit plot
provides error between output and target. It also provides targets and output value of
training and validation for model.

The error histogram plots of ANN-1, ANN-2 and ANN-3 are shown in Fig. 10.
The blue, green and red bars represent training, validation and testing, respectively.
The histogram plot gives error training, validation and testing, respectively.

The training plots of ANN-1, ANN-2 and ANN-3 are shown in Fig. 11, showing
predicted value is close to measured values. Y = T denotes perfect plot; that is, data
points lie on a line with slope of 45°. Regression plot presents output and target
correlation. For training, R value is close to 1, showing high correlated value.
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Fig. 8 Performance plot of a ANN-1, b ANN-2 and c ANN-3
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Fig. 9 Fit plot of a ANN-1, b ANN-2 and c ANN-3
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Fig. 10 Error histogram plot of a ANN-1, b ANN-2 and c ANN-3
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Table 2 Experimental value
of SR and PV modules’
electrical parameters

S. No. Time SR
(W/m2)

Isc (A) Voc
(V)

Pmax
(W)

1 7:30 AM 167.8 2.46 20.83 35.39

2 8:30 AM 248.1 3.33 20.77 42.72

3 9:15 AM 285.1 3.17 20.84 40.72

4 9:45 AM 415.6 4.9 20.55 39.61

5 10:18
AM

384 4.76 20.18 38.7

6 10:30
AM

302.7 3.69 20.88 38.8

7 10:45
AM

368.6 4.68 20.68 38.18

8 11:15
AM

335.8 4.45 20.46 39.52

9 11:45
AM

325.7 3.98 20.54 36.62

10 12:15
PM

271 3.53 20.43 38.2

11 1:20 PM 168 2.51 20.37 36.42

12 1:45 AM 332.9 4.6 20.89 37.96

13 2:30 PM 142 2.08 20.32 31.15

14 3:00 PM 273.6 4.05 20.96 40.67

15 3:30 PM 229.5 3.17 20.5 33.7

16 4:30 PM 119.8 1.78 20.68 28.22

The maximumMAPE of training and testing data for ANN-1, ANN-2 and ANN-
3 models is given in Tables 3 and 4. The MAPE in testing for ANN models with
inputs as SR, V oc and Isc is 6.4, 11.3 and 7.9%, respectively, showing SR is the most
influencing variable, but for sites where measuring SR is not available, V oc and Isc
can be used for prediction of PV maximum power with acceptable accuracy.

Multiple Linear Regression (MLR) Models

In MLR model, output Y is related to input X for each observation as follows:

E(Y/X) = α + β1X1 + · · · + βp X p (17)

Table 3 Prediction accuracy
of training datasets

Models Input MAPE (%) RMSE

ANN-1 SR 1.0 0.8

ANN-2 Voc 5.1 3.3

ANN-3 Isc 3.1 1.9
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Fig. 11 Training plot of a ANN-1, b ANN-2 and c ANN-3

Table 4 Prediction accuracy
of testing datasets

Models Input MAPE (%) RMSE

ANN-1 SR 6.4 4.2

ANN-2 Voc 11.3 4.3

ANN-3 Isc 7.9 3.8
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Table 5 MLR models

Models Correlations MAPE Highlights

MLR-1 PVmax.power = −64.2661+
0.0072SR+ 4.5298Voc + 0.7813Isc

5.4

MLR-2 PVmax.power =
−65.8801+ 0.0103SR+ 4.6310Voc

5.4 High prediction accuracy

MLR-3 PVmax.power =
28.8302+ 0.0049SR+ 1.3495Isc

6.0

MLR-4 PVmax.power =
29.6470+ 0.0102SR

6.1

Table 6 PA Parameters Value

E(ac,d) 349.1 Wh/day

YF 4.7 kWh/kWp

YR 6.7 h

PR 70%

where α is intercept and β j are coefficients or slopes.
Four MLR models (MLR-1, MLR-2, MLR-3 and MLR-4) are developed using

least squares approach (Table 5). MLR MAPE value changes from 5.4 to 6.1%,
showing high prediction accuracy as per Lewis.

MLR and ANN models of this study are compared with the study performed by
Yadav and Chandel [28]; it is found that prediction lies in high accuracy range.

Performance Analysis (PA) of PV Module

Based on experimental readings given in Table 2, performance parameters of 74 Wp
Si multi-crystalline PV module are calculated as given in Table 6.

Conclusions

In this paper, three ANNs (ANN-1, ANN-2 andANN-3) and four newmultiple linear
regression models (MLR-1, MLR-2, MLR-3 and MLR-4) are proposed to predict
maximum power of 74 Wp Si multi-crystalline PV under outdoor condition. The
results are obtained by achieving the outdoor measurements of 74 Wp PV module
in mountainous region located at a height of 2133.6 m which is characterized by
average level of solar irradiance. The input variables to ANN-1, ANN-2 and ANN-3
are SR, V oc and Isc, respectively. MLR-1 correlates PVmax as a function of SR, V oc

and Isc, MLR-2 correlates PVmax as a function of SR and V oc, MLR-3 correlates
PVmax as a function of SR and Isc, and MLR-4 correlates PVmax as a function of
SR. The MAPE for ANN-1, ANN-2 and ANN-3 is 6.4, 11.3 and 7.9%, respectively,
showing with SR as inputs has least MAPE but using Isc as inputs to ANNmodel can
be used for prediction with high accuracy. The MAPE for MLR-1, MLR-2, MLR-3
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and MLR-4 is 5.4, 5.4, 6.0 and 6.1%, respectively. These methods are useful for
photovoltaic installation to find out maximum power provided by the systems.

The study has also included the performance analysis of PV module. The total
energy generated, final yield, reference yield and performance ratio of 74 Wp multi-
crystalline PV module are 349.1808 Wh/day, 4.7187 kWh/kWp, 6.756 h and 70%.
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Adaptive Fuzzy Logic Controller
as MPPT Optimization Technique
Applied to Grid-Connected PV Systems

Mohamed M. Refaat, Yousry Atia, M. M. Sayed and Hossam Abdel Fattah

Abstract This chapter presents a complete design ofmaximumpower point tracking
control scheme applied to single-phase single-stage and two-stage grid-connected
PV systems based on an adaptive fuzzy controller (AFLC). This technique is pro-
posed to enhance the efficiency of a photovoltaic (PV) array and diminish the output
power oscillations. The adaptive nature of the proposed controller provides online
tuning of fuzzy rules parameters to deal with varying sun radiation and ambient
temperature. Ranges of input variables of fuzzy system are defined using genetic
algorithm. The adaptive MPPT controller is compared with existing setups, namely
the “incremental conductance” (IC) technique and fuzzy logic controller (FLC). The
inverter controller is designed in the synchronous frame so that a simplified controller
such as PI-controller is implemented. Simulation and experimental results demon-
strate the supremacy of the adaptive technique in terms of the speed of tracking and
oscillations reduction around the maximum point of power–voltage (P–V ) curve.

1 Introduction

Due to the variations in environmental conditions and the stochastic behavior of PV
systems, MPPT techniques need to satisfactorily operate at various weather or load
conditions. Various MPPT techniques, with different implementation complexity
and cost, have been applied to PV systems. Typical techniques include “perturbation
and observation” (P&O), incremental conductance, fuzzy system, particle swarm
optimization (PSO), and artificial neural networks (ANNs) [1–4]. P&O technique
is based on perturbation of PV operating voltage and power to reach the MPP. The
disadvantages of this technique are typically the high oscillations generated around
the MPP, and the failure to achieve maximum power under rapid changing of envi-
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ronmental conditions [1, 2]. IC technique provides a solution for the systems exposed
to rapid variation in solar radiation but is also plagued by high oscillations around
the maximum power point (MPP) [1, 3].

FLC attempts to overcome these problems. Microcontrollers have made using
FLC popular for MPPT over the last decade [5–7]. As mentioned in [8, 9], fuzzy
logic controllers have the advantages of working with imprecise inputs, not needing
an accurate mathematical model, and handling nonlinearity. However, the design of
a FLC requires the selection of the size of the rule base, the shape and parameters of
the membership functions, and the rule inference mechanism. Increasing the number
of rules to improve the performance corresponds to a substantial increase in memory
requirements and the program execution time. That is known in the fuzzy literatures
as the rule explosion phenomenon. Further, the conventional MPPT FLC lacks the
ability of self-tuning.

The authors in [10] propose a MPPT using fuzzy set theory to improve energy
conversion efficiency. Fuzzy algorithm based on 25 linguistic rules describing the
operator’s control strategy is applied to control step-up converter for MPPT. FLC
based on coarse and fine mode is incorporated in order to reduce not only the time
required to track the MPP but also the fluctuation of power. The suggested algorithm
increases the memory requirement and does not have the ability of self-tuning. In
[11], a proper MPPT control of photovoltaic array using fuzzy control is developed
to obtain maximum power from photovoltaic array. The fuzzy system uses small
number of rules. Therefore, this control method is easy to implement to real system.
Although the fuzzy system needs a small memory, it lacks the ability of self-tuning.
In [12] proposed method of maximum power point tracking using adaptive fuzzy
logic control for grid-connected PV system is introduced. It has a good performance
and it can also change fuzzy parameters for improving control system. However,
this method defines the ranges of error variable at which the scaling factors and the
peak of the membership functions change. This method needs high knowledge of
the system and is suitable for a certain environmental conditions. Also, it does not
ensure the stability and needs large memory size.

In this chapter, AFLC is developed to reach the maximum point of power–voltage
curve, to avoid oscillations around the MPP, to increase the speed of tracking, and to
copewith rapid variation in ambient weather conditions [13]. In addition, it decreases
the number of rules, hence decreases the memory requirements and program exe-
cution time. The derivative of PV array power with respect to PV voltage is used
to tune the parameters in the consequent part of the rules. Estimated parameters are
obtained using Lyapunov theory and variable structure, which ensure the stability
and increase robustness.

2 Design of MPPT Controller

PV systems can be connected to the grid using two setups: single-stage and two-stage
arrangements as shown in Figs. 1 and 2, respectively. In single-stage configuration,
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Fig. 1 Proposed single-stage system

Fig. 2 Proposed two-stage system

PV array is connected to the grid through DC–AC converter, which is responsible for
MPPT and power control. In two-stage configuration, the PV system is connected
to the grid through two stages: a DC–DC converter (boost converter) for raising
or reducing the PV voltage and for performing MPPT and a DC–AC converter for
controlling the output active and reactive power and for synchronizingwith the power
grid. In general, the grid-tied mode controller comprises two parts: PV side generator
controller (MPPT) and inverter-side controller.

This chapter focuses on the design of MPPT controller in single-stage and two-
stage systems. To design a dynamicMPPT controller, it is necessary to determine the
maximum step size and the minimum sampling rate between every perturbation. In
this chapter, a simplified design guideline is selected to determine both parameters
in two-stage and single-stage grid-connected systems [14, 15].
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2.1 Step Size and Perturbation Period Calculation

Two-Stage System
As specified previously,MPPTcontrollers are applied to the boost converter to extract
the maximum PV array power. In grid-connected PV systems, the impact of single-
phase voltage source inverter is neglected as it operates at constant DC-link Voltage.
In addition, the bandwidth of the DC-link voltage control loop must be higher than
the bandwidth of PV side controller. In this section, the minimum settling time of the
boost converter is determined and is compared with the settling time of the DC-link
voltage control loop of the inverter. Themaximumof both is selected as theminimum
perturbation period of the MPPT controller.

A small signal transient analysis model has been developed to investigate the
effects of step size (d̃) and the perturbation time (t̃) on the system dynamics. A sim-
plified circuit for the system is shown in Fig. 3. In this analysis, the shunt resistance
(Rsh) is neglected. Moreover, the PV array can be modeled using an equivalent resis-
tance (Req) and voltage source (veq) and are obtained by Eqs. (1) and (2), respectively
[16].

Req = −
[

∂ipv
∂vpv

]−1

=
Nsnvt exp

(
−

(
vpv+ipv

Ns
NP

Rs

Nsnvt

))
+ i0

Ns
NP

Rs

Npio
(1)

Veq = Vpv + Reqipv (2)

The inputs of the system are veq, DC-link voltage (vdc) and duty cycle (d); and
the outputs are the PV array voltage (vpv) and PV current (ipv). The linear model of
the system is given as follows [17]:

[ ˙̃vpv˙̃i

]
=

[ −1
cpvReq

−1
cpv

1
L

−rL
L

][
ṽpv

ĩL

]
+

[
0

vcdc
L

][
d̃
]

[
ṽpv

] = [
1 0

][ ṽpv

ĩL

]
(3)

Fig. 3 Equivalent circuit of two-stage system
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The system transfer function is deduced as:

H(s) = ṽpv

d̃
=

− vcdc
Lcpv

S2 +
(
rL cpv+ L

Req

)
Lcpv

S +
(

rL
Req

+1
)

Lcpv

(4)

From the model in (4), the system natural frequency and damping ratio are

ωn =
√
rL + Req

LC1Req
(5)

ξ = 1

2

rL Reqc1 + L√
Lc1rL Req + Lc1R2

eq

(6)

t̃ can be considered equivalent to the 2% settling time for the power transient signal.
Therefore, the minimum t̃ can be calculated as:

t̃ ≥ 4

ξωn
= 8Lc1Req

rL Reqc1 + L
(7)

The time domain equation of the system is provided in Eq. (8). The higher-order
terms can be neglected, and Eq. (8) is simplified to Eq. (9).

ṽpv = − vc2(
rL
Req

+ 1
)
[
1 − e−ξωn t√

1 − ξ 2
sin(ωd t + θ)

]
d̃ (8)

ṽpv = − vcdc(
rL
Req

+ 1
) d̃ (9)

From Eq. (9), the step size of the controller should be selected higher than the
peak of noise in the measured signal.

Single-Stage System
In single-stage systems, the maximum perturbation frequency must be lower than
the bandwidth of outer loop in single-phase inverter controller. In addition, the step
size of the controller is selected higher than the peak of noise in the measured signal.

3 Fuzzy Logic Controller (FLC) as MPPT Technique

FLChas been broadly used for industrial applications since an accuratemathematical
model is not required, and that it has the flexibility of handling nonlinearities. The
structure of FLC is composed of four parts: the fuzzifier, the knowledge base, the
inference engine, and the defuzzifier as depicted in Fig. 4 [8].
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Fig. 4 Structure of FLC

Fig. 5 Structure of MPPT controller-based FLC and AFLC

Fig. 6 Inputs and output
membership functions

MPPT-based FLC has two inputs error (e) and change of error (�e); one output
is the change in duty cycle (d̃) in two-stage system or the change in DC-link voltage
(ṽdcref) in single-stage system. The output of the fuzzy logic controller is then inte-
grated to generate the control signal (d or vdcref) as shown in Fig. 5. e and �e at the
kth sampled time are defined as follows:

e(k) = �ppv
�vpv

= ppv(k) − ppv(k − 1)

vpv(k) − vpv(k − 1)

�e = e(k) − e(k − 1) (10)

Each of the input and output fuzzy variable is assigned three linguistic values
negative (N), zero (Z), and positive (P). Each linguistic value is represented by
triangle membership function as shown in Fig. 6. The values Xmax and Xmin represent
the maximum and minimum variation of the input and output signals. These values
are selected based on the simulation information or an optimization technique. Let
Xmax = −Xmin and the range of each fuzzy variable is normalized between −1 and
+1 by introducing a scaling factor (k = 1/Xmax) to represent the actual signal.
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In this work, the range of the inputs is selected through studying the relation
between (e, �e) and vpv at various environmental conditions. Then, using an opti-
mization technique, genetic algorithm (GA) is selected; the optimum scaling factors
are obtained.

GA algorithm is predicated on principles of natural evolution and survival of the
fittest. It begins by shaping decision variables and the objective function. Then, it
considers multiple candidate solutions (populations) to the problem and proceeds by
moving this population of solutions toward a global optimum [18]. Thus, as popula-
tion evolves, the optimum solution is achieved. GA encompasses amain generational
process cycle.Within this cycle, GA begins by haphazardly generating an initial pop-
ulation and this population is exposed to genetic operators. The general flow diagram
of process cycle is given in Fig. 7. This algorithm recurrent till stopping criterion is
achieved.

MATLAB provides an optimization toolbox that includes a GA-based solver. To
use the optimization application, the following data is used:

• The selected cost function is:

obj(e) =
∫

e2dt (11)

Fig. 7 Flow chart of genetic algorithm
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Table 1 Fuzzy rules of
two-stage system

e �e

N Z P

N P P Z

Z P Z N

P Z N N

Table 2 Rules of FLC e �e

N Z P

N N N Z

Z N Z P

P Z P P

• Upper and lower bounds are determined through studying the response of input
variables at different environmental conditions.

A symmetrical fuzzy rule set is used to describe the fuzzy controller, as described
in Tables 1 and 2. Using the center of gravity defuzzification method, the appropriate
crisp control is then generated. Let θ i represents the centroids of the ith membership
function of the output variable. Thus, for h rules, the output of the fuzzy system is
calculated as follows:

d̃, ṽdc =
∑h

1 ωiθi∑h
1 ωi

= θTτ (12)

where τi = ωi∑h
1 ωi

and the strength of the ith rule is ωi. It is calculated based on inter-

preting the “AND” conjunction as a product of themembership values corresponding
to the measured values of e and �e.

4 Adaptive Fuzzy Control (AFLC) as MPPT Technique

In this part, a computationally efficient algorithm is suggested to tune θ i online such
that the regulator will have an improved performance. The suggested algorithm based
on AFLC and its structure is shown in Fig. 8. The proposedMPPT technique reduces
the rule base size, decreases the required memory, and has a good performance in
the training phase as it makes use of the initial rule base defined for the fuzzy logic
controller [19, 20].

θ i can be estimated as follows [20]:
Consider the nonlinear system (3) is represented by:
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Fig. 8 The basic structure of
AFLC [20]

ẍ = f (x) + bu (13)

y = x (14)

where x the state-variable vector, u is the control signal. We can choose the control
u to cancel the nonlinearity and design the controller based on linear control theory
(e.g., pole placement) the control law is:

u∗ = 1

b

[− f (x) + ÿm + kTe
]

(15)

If the tracking error is

e = ym − x, ė = ẏm − ẋ, ë = ÿm − ẍ (16)

The tracking error state vector, e, can be selected as

e = [
e ė

]T
(17)

and the design vector, k, is given by

kT = [
k2 k1

]

Substituting u* for u from (15) to (13) leads to

ẍ = ÿm + kTe (18)

Noting the above definition of the tracking error (e) is possible to rewrite as
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ë + kTe = ë + k1ë + k2e = 0 (19)

The characteristic equation of error model (19) is given by:

s̈ + k1ṡ + k2 = 0 (20)

The design parameters k1, …, kn are selected such that the roots of (20) are on
the left-hand side of the S-plane to ensure the stability.

If the model suffers a considerable uncertainty or input disturbance and noisy
measurements, the controller performance degrades significantly. Here, we assume
f (x) and b are unknown and the ideal controller (15) cannot be implemented. How-
ever, we have the fuzzy IF-THEN rules in Tables 1 and 2 that describe behavior of
the controller. Therefore, a reasonable idea is to replace u* by fuzzy system; i.e., it
is possible to write

u∗ ≈ θ∗Tτ(x) (21)

where θ∗ is the vector of the centroids of the membership functions assigned to u*
and τ(x) is the vector of fuzzy basis functions.

The control law in (21) is implemented based on an estimate θ of the true value
of θ∗. Hence, the control law can be written as:

u = uc(θ, x) = θTτ(x) (22)

Substituting uc(θ, x) in (13) leads to

ẍ = f
(
x
) + buc(θ, x) (23)

Adding and subtracting bu* to (23) result in

ẍ = f
(
x
) + bu∗ + b(uc(θ, x) − u∗) (24)

Similar to the derivation of (19), it is possible to show that the error model corre-
sponding to the closed-loop system is

ë = −kTe + b
(
u∗ − uc(θ, x)

)
(25)

Equation (25) can be put on the vector form by choosing

ė1 = ė = e2,

ė2 = ë = −kTe + b
(
u∗ − uc(θ, x)

)
(26)
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So, the state space model takes the form

ė = �ce + bc
(
u∗ − uc(θ, x)

)
(27)

where

�c =
[

0 1
−k2 −k1

]
, bc =

[
0
b

]

The design parameters k1, …, kn are selected such that the eigenvalues of �c are
located in a pre-specified region of the left-hand side of the S-plane.

The adaptation law of θ is typically based on the second method of Lyapunov to
ensure the stability of the adaptive system. To illustrate that, consider the following
Lyapunov function:

V = 1

2
eT Pe + b

2
ϕT
−1ϕ (28)

where P and 
 are positive definite matrices and ϕ = θ∗ − θ is the estimation error.
The calculation of P and 
 are shown below. The designer normally picks up the
matrix 
 as a diagonal matrix that determines the adaptation rate as shown below.
The time derivative of V is

V̇ = 1

2
(eTPe + ėTPe) + bϕT
−1ϕ̇ (29)

Substituting for e· from Eq. (27) in Eq. (29) leads to

V̇ = 1

2
eT

(
P�c + �T

c P
)
e + ϕTτ

(
x
)
bTc Pe + bcϕ

T
−1ϕ̇ (30)

The closed-loop system in (27) is stable if V · is negative semi-definite. Since �c

has stable eigenvalues, it is true that P is the solution of the algebraic Lyapunov
equation

P�c + �T
c P = −Q (31)

where Q is a positive semi-definite matrix that is arbitrarily chosen by the designer.
Select the adaptation law as

ϕ̇ = −1

b
bTc Pe
τ

(
x
)

(32)

Hence, Eq. (30) is possible to rewrite as

V̇ = −1

2
eTQe (33)
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Equation (33) clearly shows that the closed-loop system (27) is stable if the adap-
tation law (32) is employed. To implement (33) and calculate θ , it is assumed that the
variation of θ∗ is much slower than that of θ ; i.e., θ∗ is locally constant. The estimate
of θ is given by

θ̇ = 1

b
bTc Pe
τ

(
x
)

(34)

The designer chooses the adaptation gain 
 as a diagonal matrix with the ith
diagonal element γi. Because of the special structure of the vector, the product bTc P
is equivalent to bp2 where p2 is the 2th row of P and the adaptation law in (34) is
simplified to

θ̇i = γi e
T pnτi

(
x
)

(35)

The adaptation law (35) suffers some drawbacks since it adopts a pure integrator.
Techniques such as the projection algorithm and sigma modification have been used
to improve the estimator performance. In [21], the variable structure algorithm is used
to implement the estimator since it leads to a robust performance and an efficient
numerical implementation. Hence, the estimator is implemented as

θi = θi sat
(
eT pn

) + θi (0) (36)

where θi is a constant set by the designer to specify the possible variation of θ i around
initial value θ i(0).

The proposed MPPT controller can be summarized as follows [17]:

Step1:Define the inputs scaling factors (k�e, ke) andoutput scaling factor (kṽdcf or kd̃)
as described in Sect. 3.
Step 2: Specify perturbation period as presented in Sect. 2.
Step 3: Define fuzzy rules as given in Tables 1 and 2.
Step 4: Specify k1 and k2.
Step 5: Use the simulation to tune p2.
Step 6: Verify that Lyapunov equation is satisfied:

P�c + �T
c P < 0 (37)

Step 7: Use the adaptation law in (41) to estimate the centroids of the output mem-
bership functions.
Step 8: Calculate the step size as described in Eq. (17).
Step 9: The output of MPPT controller is given by.

u(k) = u(k − 1) + ũ(k) (38)

where u represent d or vdcref.
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5 Inverter-Side Controller Design

Grid-connected PV systems must achieve the general requirement of distributed
generators connected to power systems. These requirements typically include syn-
chronization, voltage regulation, and lower THD in the injected current [21]. This
section addresses a complete design of the control unit applied to a single-phase
H-bridge grid-connected inverter in synchronous reference (DQ) frame [17, 22–24].
The dynamic of the AC-side variables in DQ-frame is given as follows [17]:

digd
dt

= Lsωoigq − rsigd + vtd − vgd

digq
dt

= −Lsωoigd − rsigq + vtq − vgq (39)

where

(
vtd
vtq

)
=

(
md vdc

mq vdc

)

Figure 9 shows the structure of the inverter-side controller. It consists of four
loops: pulse width modulation (PWM), phase-locked loop (PLL), current control
loop, and DC-link voltage loop [17].

Fig. 9 Proposed inverter-side controller
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Fig. 10 Schematic diagram of αβPLL method

Fig. 11 Block diagram of current control loop

5.1 Grid Synchronization

The grid angle detection at the point of common coupling (PCC) must be assessed to
synchronize with the utility grid. In this way, a PLL algorithm is prescribed to have
exact and quick grid angle detection [25, 26].

The selected PLL technique in this work is the stationary reference frame phase-
locked loop (αβPLL) as shown in Fig. 10. Parameters of PLL controller are [17]:

kiL = ω2
npll

vm
(40)
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Fig. 12 Control block diagram of DC-link loop

kpL = 2ξpllωnpll

vm
(41)

where ωnpll and ξpll are the selected natural frequency and damping ratio of the PLL
loop.

5.2 Current Controller Design

The objective of current regulator is to track the reference signals (igdref and igqref)
with acceptable dynamic response. Current control loop is shown in Fig. 11. It shows
that the d- and q-axes control loops are identical. Thus, both compensators can also
be identical. The parameters of PI-controller are designed as follows [17]:

kpi = ωiiLs (42)

kii = kpi Rs

Ls
(43)

where the bandwidth (ωii) of the closed-loop system is considerably smaller, for
example, ten times, than the switching frequency. Ls and Rs are the inductance and
the resistance of inverter output filter.

5.3 DC-Link Voltage Controller Design

DC-link voltage regulation is essential to maintain the power balance between the
input power (pdc), fromPVarray orDC-to-DCconverters, and the outputACpower to
the utility (pt). In Fig. 12, the negative sign is included in the controller to compensate
the negative sign of the DC-link model. The parameters of PI-controller are [17]:
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Fig. 13 Schematic circuit of two-stage single-phase grid-connected PV system

kiv = ω2
g

ksys
√(

1 − TcTzω2
g

)2 + (Tc + Tz)
2ω2

g

(44)

kpv = Tckiv (45)

where ksys = 2rs igdo+Vgdo

2CdcVdco
, Tz = Ls igdo

2rs igdo+Vgdo
, Tc = 1−ωgTz

ωg+Tzω2
v
and ωg the selected gain

crossover frequency.

6 Simulation and Experimental Results

6.1 Two-Stage System

In this study, 1.81 kW PV array is interfaced with single-phase grid-connected VSI
through aboost converter. Theboost converter is designed to operate in the continuous
conduction mode. PV array comprises four TSM-295 PC14 modules connected in
series as one string. The parameters of the system are given inTable 3. The parameters
of the inverter side controller are given in Table 4. The systems are intended for
evaluation purposes in a laboratory environment at Electronics Research Institute
(ERI) as shown in Figs. 13 and 14. The main components of the system are given in
Table 5.
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Table 3 System parameters Cpv 2200 μF

Cdc 3300 μF

L 5 mH

rL 0.1 �

Ls 5 mH

Rs 0.1 �

vg 220 V

Table 4 inverter-side
controller parameters

kpl kil kpi kii kpv kiv

2.57 2730.3 s−1 30 620 s−1 0.36 21.2 s−1

Table 5 Components of the
system

Item Part

PV array 1

Voltage source inverter 2

Boost converter 3

Inverter output filter (5 mH) 4

Inductor of the boost converter 5

Current and voltage transducers circuit 6

dSPACE MicroLabBox 7

Miniature circuit breaker (MCB) 8

Grid (AC) Contactor and PV (DC) contactor 9

Inverter interfacing board 10

Power supply 11

Oscilloscope 12

Table 6 Designed
parameters of MPPT
controller (two-stage system)

FLC, AFLC IC

ke k�e kd̃ t̃ t̃ d̃

0.375 0.126 0.02 0.5 s 0.5 s 0.01

Figures 15 and 16 show the response of Req and t̃ at various irradiance levels and
module temperatures. The figures show that t̃ increases with decreasing vpv and solar
insolation and with increasing the module temperature. Therefore, these conditions
should be considered in the design of t̃ . The figures also show that the maximum
settling time of boost converter at different environmental conditions is smaller than
the settling time of DC-link voltage loop (0.2 s); hence, t̃ should be selected higher
than 0.2 s.

The range of input variables for FLC and AFLC are selected based on Figs. 17
and 18. The initial rules for AFLC are given in Table 7. It is depicted that the absolute
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Fig. 14 General view of the experimental bench

Fig. 15 Relation between Req and vpv in two-stage system a at different irradiance levels and
module temperature 25 °C b at different module temperatures and irradiance
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Fig. 16 Relation between t̃ and vpv in two-stage system a at different irradiance levels and module
temperature 25 °C b at different module temperatures and irradiance 100 W/m2

Table 7 Initial rules of the
AFLC (two-stage system)

e �e

N Z P

N 0.5 0.5 0

Z 0.5 0 −0.5

P 0 −0.5 −0.5

values of e and Δe increase with increasing solar radiation and module temperature.
Based on these figures, the upper and lower bands for genetic toolbox in MATLAB
are defined. The optimum scaling factors of the inputs are presented in Fig. 19. The
selected parameters of IC, FLC and AFLC are provided in Table 6.

For experimental evaluation, the system is subject to the following sequence of
events: The MPPT algorithm is inactive until ipv (at duty cycle = 0.5) is about 1 A,
then the MPPT algorithm is activated at point “start.” This permits the algorithms to
be tested in similar conditions. Solar radiation and module temperature are measured
at this condition. Solar radiation and module temperature are 800 W/m2 and 60 °C.

Figures 20, 21, 22, 23, 24, 25, 26, and 27 show the simulation and experimen-
tal results of the adaptive MPPT controller, FLC, and IC technique at irradiance
800 W/m2 and module temperature 60 °C. Figure 22 shows the movement of the
operating point on power–voltage curve of the PV array. It shows that the operating
point moves from right-hand side of MPP and settles at the MPP. The results show
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Fig. 17 e is plotted against vpv in two-stage system a at different irradiance levels and module
temperature 25 °C b at different module temperatures and irradiance 1000 W

Fig. 18 �e is plotted against vpv in two-stage system a at different irradiance levels and module
temperature 25 °C b at different module temperatures and irradiance 1000 W/m2
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Fig. 19 Selected ke and k�e in two-stage system using genetic toolbox

Fig. 20 Simulation results: ppv using AFLC, FLC, and IC at irradiance 800 W/m2 and module
temperature 60 °C in two-stage system

that the IC algorithm shows low oscillations at the MPP, but the tracking speed is
decreased. On the other hand, the adaptive technique provides high tracking speed
with acceptable oscillations at the MPP. The performance of AFLC is compared
with FLC using the same number of rules and scaling factors. Non-adaptive fuzzy
controller presents high oscillations in extracted PV power and voltage and slow
response compared to the adaptive technique. Figure 28 shows the injected current
to the grid.

To test the performance of proposed technique at different conditions, we
depend on the simulation results as we cannot control the environmental conditions.
Figures 20, 21, 22, 23, 24, 25, 26, and 27 show that experimental and simulation
results are the same. Hence, we can predict that the simulation and experimental
results at other conditions are also the same.

Figures 29, 30, 31, and 32 show the simulation results of the adaptive MPPT
controller, FLC, and IC technique at different irradiance levels and different module
temperatures. Simulation results show that the proposed MPPT technique has the
superiority in tracking speed and reduction of output oscillations as anticipated.
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Fig. 21 Simulation results: a vpv b ipv, at irradiance 800 W/m2 and module temperature 60 °C in
two-stage system

Fig. 22 Simulation results: slope of operating point on P–V curve at irradiance 800 W/m2 and
module temperature 60 °C in two-stage system

6.2 Single-Stage System

The selected system consists of 12 PV modules connected in series as one string,
and the parameters of the proposed system are in Table 3. The systems are intended
for evaluation purposes in a laboratory environment at ERI. Figure 33 shows the
schematic diagram of single-stage single-phase grid-connected system. In this test,
the boost converter in Fig. 14 is omitted (Fig. 34).

The range of input variables for FLC andAFLC are selected based on Figs. 35 and
36, and the optimum scaling factors are selected using genetic algorithm as shown
in Fig. 37. The parameters of MPPT techniques are given in Table 8 and the initial
rules for AFLC are given in Table 9.

For experimental evaluation, the system is subject to the following sequence of
events: TheMPPT algorithm is inactive until vdc is regulated at 460 V and selects the
condition at which ipv at this operating point is about 2 A. At point “start,” the MPPT
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Fig. 23 Experimental results: a vpv b ipv, and ppv using IC at irradiance 800 W/m2 and module
temperature 60 °C in two-stage system. Scale: 60 V/div, 3 A/div, 200 W/div

Fig. 24 Experimental results: a vpv b ipv, and ppv power using FLC at irradiance 800 W/m2 and
module temperature 60 °C in two-stage system. Scale: 60 V/div, 3 A/div, 200 W/div

Table 8 Designed
parameters for single-stage
system

FLC, AFLC IC

ke k�e kṽ t̃ t̃ ṽ

0.57046 0.11581 6 0.5 s 0.5 s 3
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Fig. 25 Experimental results: vpv, ipv, and ppv using AFLC at irradiance 800 W/m2 and module
temperature 60 °C in two-stage system. Scale: 60 V/div, 3 A/div, 200 W/div

Fig. 26 Experimental results: comparison between the extractedPVpowers at irradiance 800W/m2

and module temperature 60 °C in two-stage system

Table 9 Initial rules of the
AFLC (single-stage system)

e �e

N Z P

N −1 −1 0

Z −1 0 1

P 0 1 1
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Fig. 27 Experimental results: a vpv b ipv, at irradiance 800 W/m2 and module temperature 60 °C
in two-stage system

Fig. 28 Experimental results: ig and igd at unity power factor in two-stage system

Fig. 29 Simulation results: ppv usingAFLC, FLC, and IC at different irradiance levels (1000W/m2

until 10 s, and 600 W/m2 from 10 to 15 s) in two-stage system
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Fig. 30 Simulation results: a vpv b ipv, at different irradiance levels (1000 W/m2 until 10 s, and
600 W/m2 from 10 to 15 s) in two-stage system

Fig. 31 Simulation results: ppv using AFLC, FLC, and IC at different module temperatures (25 °C
until 10 s, and 60 °C from 10 to 15 s) in two-stage system

Fig. 32 Simulation results: a vpv b ipv, at different module temperatures (25 °C until 10 s, and
60 °C from 10 to 15 s) in two-stage system
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Fig. 33 Schematic circuit of single-stage single-phase grid-connected PV system

Fig. 34 e is plotted against vpv in single-stage system a at different irradiance levels and module
temperature 25 °C b at different module temperatures and irradiance 1000 W/m2



274 M. M. Refaat et al.

Fig. 35 �e is plotted against vpv in single-stage system a at different irradiance levels and module
temperature 25 °C b at different module temperatures and irradiance 1000 W/m2

Fig. 36 Selected ke and k�e in single-stage system using genetic toolbox

algorithm is activated. This permits the algorithms to be tested in similar conditions
(not the same). Solar radiation andmodule temperature aremeasured at this condition
using. Solar radiation and module temperature are 800 W/m2 and 60 °C.

Figures 37, 38, 39, 40, 41, 42, 43, and 44 show the simulation and the experi-
mental results of the adaptive MPPT controller, FLC, and IC technique at irradiance
800 W/m2 and module temperature 60 °C. Figure 25 shows the movement of the
operating point on power–voltage curve of the PV array. It shows that the operating
point moves from right-hand side of MPP and settles at the MPP. The results verify
that the adaptive MPPT algorithm reaches the MPP faster than IC and FLC with
acceptable dynamic response. Figure 45 shows ig and igd when MPPT algorithm is
activated.
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Fig. 37 Simulation results: ppv using AFLC, FLC, and IC at irradiance 800 W/m2 and module
temperature 60 °C in single-stage system

Fig. 38 Simulation results: a vpv b ipv, at irradiance 800 W/m2 and module temperature 60 °C in
single-stage system

Fig. 39 Simulation results: slope of operating point on P–V curve at irradiance 800 W/m2 and
module temperature 60 °C in single-stage system
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Fig. 40 Experimental results: a vpv b ipv, and ppv using IC in single-stage system. Scale: 120 V/div,
3 A/div, 380 W/div

Fig. 41 Experimental results: a vpv b ipv, and ppv using FLC in single-stage system. Scale:
120 V/div, 3 A/div, 380 W/div
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Fig. 42 Experimental results: a vpv b ipv, and ppv using AFLC in single-stage system. Scale:
120 V/div, 3 A/div, 380 W/div

Fig. 43 Experimental results: comparison between the extracted PV powers using IC, FLC, and
AFLC in the single-stage system at irradiance 800 W/m2 and module temperature 60 °C in single-
stage system

As mentioned before, the performance of proposed technique is tested at different
conditions using simulation results. Figures 46, 47, 48, and 49 show the simulation
results of the adaptive MPPT controller, FLC, and IC technique at different irra-
diance levels and different module temperatures. Simulation results show that the
proposed MPPT technique has the superiority in tracking speed and reduction of
output oscillations as anticipated.
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Fig. 44 Experimental results: a vpv b ipv, at irradiance 800 W/m2 and module temperature 60 °C
in single-stage system

Fig. 45 Experimental results: ig and igd at unity power factor in single-stage system

Fig. 46 ppv using AFLC, FLC, and IC at different irradiance levels (1000 W/m2 until 5 s, and
600 W/m2 from 5 to 10 s)
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Fig. 47 a vpv b ipv, at different irradiance levels (1000 W/m2 until 5 s, and 600 W/m2 from 5 to
10 s) in single-stage system

Fig. 48 ppv using AFLC, FLC, and IC at different module temperatures (25 °C until 3.5 s, and
60 °C from 3.5 to 15 s) in single-stage system

Fig. 49 a vpv b ipv, at different module temperatures (25 °C until 3.5 s, and 60 °C from 3.5 to 15 s)
in single-stage system
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7 Conclusion

In this chapter, AFLC as MPPT optimization technique applied to two-stage and
single-stage configurations are presented. Moreover, it presents a simplified method
to select the minimum step size and the minimum perturbation period for MPPT
controller applied to grid-connected PV systems. It also introduces method to select
the range of input variables of fuzzy system based on genetic algorithm.

The performance of AFLC was examined at different environmental conditions
and was compared with FLC and fixed step IC in single-stage and two-stage systems.
The simulation and experimental results showed that AFLC reached the MPP faster
with low oscillations; hence, the efficiency is increased, the fluctuation in power
decreases, and the output power quality of the system increases in single-stage and
two-stage systems. They also demonstrated that FLC as MPPT technique needed an
increase in the number of rules to improve the performance corresponds to a sub-
stantial increase in memory requirements and the program execution time. Further,
MPPT-based FLC lacked the ability of self-tuning. The adaptive MPPT technique
diminished the impact of input disturbances. Moreover, it was more robust and has a
good performance in the training phase. The proposed MPPT technique reduced the
rule base size and decreases the required memory and decreases the execution time.

The control of the grid-tied single-phase inverter in DQ-frame is designed. The
experimental results show that the high quality of the current injected into the grid.
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Performance Improvement of Perturb
and Observe Maximum Power Point
Tracking Technique for Solar PV
Applications

Ihechiluru Fortune Anya, Chitta Saha, Hafiz Ahmed, M. N. Huda
and Sujan Rajbhandari

Abstract The renewable energy market has increased significantly over the last
decade, and the solar photovoltaic (PV) power generation is becoming important in
many countries globally with a particular interest in the field of distributed electric
power generation. A regular and accurate examination and evaluation of the photo-
voltaic system performance and efficiency are very essential in the sense that they
provide vital information of the system’s quality evaluation for the users, installers,
as well as the manufacturers. The maximum power point of a solar panel varies with
the irradiation and temperature and the control algorithms are commonly used for
the maximization of the power extraction from PV arrays known as maximum power
point tracking (MPPT) algorithms. Perturb and Observe (P&O) algorithm is one of
the popular techniques frequently used due to its easy implementation and low cost.
TheMPPT technique ismainly used for obtaining themaximumpower from the solar
PVmodule and conversion circuit to the load and improving the power quality of PV
power generation for grid connection. Perturb and Observe maximum power point
tracking (MPPT) is extensively used in charge controllers for extracting maximum
power from photovoltaic (PV) module irrespective of irradiance, temperature and
load variation. The standard P&OMPPT technique has drawbacks bordering on fast
convergence time to a maximum power point, poor system response to fast-changing
irradiance and steady-state oscillation with a fixed step size. This chapter discusses
the detailed operation and implementation of an improved P&O algorithm technique
to resolve the various challenges of the standard P&O algorithm. This technique
segments the operational region of the PV array into four operating sectors based on
the sector location from the maximum power point (MPP), step size modifications
are implemented. Furthermore, the critical comparison is made between the new
P&O method and the standard P&O method. Finally, the hardware implementation
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of both MPPT algorithms is discussed in order to evaluate their performance and
efficiency. The measured results show that the average efficiency of the proposed
system is 96.89% which is more than 4% higher than the standard system.

Nomenclature

Npr Parallel connected strings
I Solar PV output current
Isc Short circuit current (A)
V pv Output voltage of solar PV
MPPT Maximum power point tracking
InCond. Incremental conductance
P&O Perturb and observe
q Electron charge
FCIC Fast-changing irradiance condition
UIC Uniform irradiance condition
STC Standard test conditions
N se Series connected strings
IPH Light-generated current
ID Diode saturation current
V oc Open circuit voltage (V)
A Diode ideality factor
Rs Series resistance
Rsh Shunt resistance
G Average solar irradiation
K Boltzmann’s constant
T Cell temperature
BC Boost converter

1 Introduction

The global investment in the solar power market has increased ten folds over the last
decade, and the applications of the photovoltaic (PV) system are becoming impor-
tant in many countries globally due to the decline in the cost of solar PV modules.
However, the performance/efficiency of the PV still is one of the major challenges
for researchers and usually depends on the PV module conversion efficiency and
the installed site atmospheric condition. The performance is mostly influenced by
both external and internal factors such as radiation, wind, electrical losses, structural
features, pollution, visual losses, ageing, temperature and shading [1–4]. Solar PV
demonstrate a nonlinear behaviour and possess a specific position on its character-
istic PV curve where the cell extracts maximum power and functions at maximum
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efficiency. Figure 1 shows a typical current–voltage (I–V) and power–voltage (P–V)
characteristic curve of a solar PV.

The maximum power point tracking (MPPT) system is applied to facilitate the
delivery of maximum power during the solar PV operation. It tracks the maximum
power variations created by the variations in the atmospheric conditions and other
contributing factors. TheMPPT system is essentially a power electronic device intro-
duced between the load and generating source (the solar PV array). The power
electronics circuits are operated together with the control algorithm of the MPPT
to achieve the extraction of maximum power. Presently, there are several MPPT
techniques to extract MPP under uniform irradiance condition (UIC), fast-changing
irradiance condition (FCIC) and partial shading condition (PSC). The maximum
power generation of the solar PV system changes with variations in atmospheric
condition, and this influences the electrical characteristics of the load. As a result,
the internal impedance of the solar PV system is hardly matched to the impedance
of the load. The main purpose of the MPPT is to match the impedance of the solar
PV system to the impedance of the load by modifying the converter’s duty cycle.
Therefore, the MPP can be located notwithstanding the unpredictability of the solar
PV characteristic curve [5–7]. There are several MPPT techniques that have been
studied to track solar PV MPP. Significant research has been carried out over the
last decade to extract maximum power from the solar PV system using different
algorithm; For example, Eltamaly et al. in [32] compiled a comprehensive review
of the most common and efficient MPPT techniques. This has been used to draw a
comparative analysis with the proposed system. Authors in [8–10] presented various
MPPT techniques covering different necessities according to cost, simplicity, the
speed of convergence, tracking efficiency, sensor requirements, operation at steady
state and hardware implementation. The performance of some MPPT techniques
supersedes some others for similar operating conditions. Also, Karami et al. and

Fig. 1 I–V and P–V characteristic curves
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Ezinwanne et al. in [11, 12] analysed and conducted a review of energy performance
and cost comparison of MPPT techniques, and they found that the hybrid MPPT
which is a combination of MPPT techniques is more beneficial compared to a single
MPPT technique. This would mitigate noise from the extracted power in the event of
low irradiance conditions and PSC. The tracking efficiency, dynamic response and
steady-state operation of the system are critical areas to be taken into account for
a successful MPPT control design when assessing the performance of the modified
MPPT system. The MPP needs to be tracked rapidly under UIC, FCIC and PSC.
The system tracking efficiency is crucial to assess the success of the MPPT process
as it measures the ratio of actual power extracted from the solar PV to the expected
theoretical power expected for a particular period. Equation (1) is implemented to
evaluate the tracking efficiency of the solar PV system [31];

η = 1

s

s∑

i

Preal,i
Pmax,i

(1)

where Preal is the ith sample of the power measured during solar PV MPPT imple-
mentation, Pmax is the ith sample of the true power expected from the solar PV under
given atmospheric conditions and s being the complete number of samples. A faster
tracking speed leads to a lower loss in the solar PV system. Once the MPP has been
achieved, the MPPT control algorithm needs to maintain constant operation at this
point for the required period. However, this is practically unachievable due to the
nature of the perturbation of MPPT algorithms. Nonetheless, the steady-state error
has to be to the barest minimum [13].

According to the MPPT algorithm classification, there are direct and indirect
MPPT techniques. P&O and IC are known as a direct method, and they can be
implemented using the system information at a particular period to achieve the MPP
[14–18]. The indirect methods (fuzzy logic control, fractional short circuit current,
fractional open circuit voltage, etc.) rely on the parameters of the system [19, 20]. The
Perturb andObserve (P&O)method is themost ubiquitouswhen comparedwith other
methods as a result of its simple operation and low-cost implementation due to the
low number of sensors required. Some MPPT methods such as self-oscillation (SO)
method, extremum seeking (ES) control, incremental conductance (IC) are derived
from P&O technique with variations in the implementation of perturbation or the
variable observed.Thefirst P&OMPPT implementationdates back to the 1970swhen
it was employed for aerospace applications. It has evolved overtime and is presently
popular for MPPT. The P&OMPPT technique exists in two configurations; the duty
cycle perturbation where the converter operates in open loop after each perturbation
and reference voltage perturbation where the converter is equipped with a feedback
voltage loop [34]. The P&OMPPT is dependent on the step size. The standard P&O
MPPT implements a specific step size. So with the application of a large specific
step size, MPP is achieved fast but high steady-state oscillations occur. With the
application of a small specific step size, it takes longer time to achieve MPP causing
power loss and low steady-state oscillations. Also, with FCIC, the standard P&O
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MPPT underperforms with respect to tracking the MPP. Studies have been carried
out drawing comparisons between perturbation of voltage and the duty cycle. It has
been deduced that with a high rate of voltage perturbation, the system may have
poor stability but possesses a faster dynamic response and in comparison, duty cycle
displays better stability with poor performance under FCIC [21, 22]. Ahmed et al.
proposed a modified P&OMPPT algorithm to decrease the steady-state error and to
prevent the loss of direction during tracking. Their technique is further verified with
experimental results and the measured results show a 1.1% improvement in tracking
efficiency on the standard P&O MPPT for slow irradiance change and 12% for
FCIC. However, the system response was almost similar to the standard P&OMPPT
showing no improvement [27]. Ahmed andSalamproposed an improved P&OMPPT
algorithm that implements a special control mechanism to change the perturbation
size aroundMPP to reduce the steady-state oscillation. It delivers a 2% improvement
in tracking efficiency in comparison with the standard P&O MPPT. However, the
system requires long computational time that impacts the response of the controller.
Therefore, impeding it from improving the efficiency any further [23]. In [24], a
modified P&O control algorithm has been implemented for a hybrid PV and wind
system. TheMPPT algorithm tracks power for both generating sources, however, the
tracking loop experiences large noise and the system has a significant steady-state
error which does not aid efficient system operation. In [25], an improved version
of P&O MPPT with a checking algorithm has been proposed. It drastically reduces
the dynamic response of the system, and however, there is a spike before the power
settles at MPP. Also, the perturbation of the duty cycle was high resulting in poor
performance under FCIC. Ghassami et al. present a modified P&OMPPT algorithm
to improve the system operation under FCIC. It implements the I–V characteristic
curve to distinguish the shifting point of operation from the environmental change.
The response of the standard P&O MPPT under FCIC is considerably improved
on however, high steady-state oscillations exist which creates power loss to counter
power loss prevented from an improved response time [26].

The evolution of the perturbation process has given rise to anotherMPPTapproach
known as particle swarm optimization (PSO). PSO utilizes low-cost digital con-
trollers and performs well under extreme test conditions [34]. Authors in [35] have
demonstrated a hybrid implementation of PSO to track theMPPwhen the PVmodule
is influenced by partial shading. This implementation combines fuzzy logic control
with PSO to properly track the global maximum power point in the system. Fuzzy
logic control (FLC) is another recent MPPT technique which does not need any tech-
nical knowledge for the PV system, and it is known to perform efficiently for fast-
changing test conditions. Artificial neural network(ANN) technique is an intelligent
MPPT approach to resolve nonlinear PV characteristic curve. These recent MPPT
approaches have their benefits and drawbacks. The P&Ohas an easy construction and
implementation; however, it experiences oscillations during steady-state operation.
The IC is better responsive to FCIC than the conventional P&O, it is also accurate.
However, this accuracy depends on the size of the increments. In comparison with
the recent approaches, PSO has a larger optimization potential that can be achieved
in a less complex fashion. However, it can experience partial optimism that could
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influence its speed and direction control. FLC is a robust, rapid MPPT approach
that yields better stability during various conditions. However, it is expensive, highly
complex and its efficiency is reliant on the accuracy of the rules. The ANN approach
can be in various forms. It displays fast tracking speed and yields better stability
during various conditions. It is also expensive, highly complex and needs a broad
and extensive information about the solar PV parameters.

In this chapter, an improved efficient variable step P&O algorithm is proposed to
improve systemdynamic response, decrease the steady-state oscillations and improve
the system behaviour during FCIC. This method involves the segmentation of the
PV array characteristic curve into different operating segments. As a result of this
segmentation, the system is subject to step size modifications based on the segment
location fromMPP. If the operating point is far from the MPP, large step voltage size
is employed for the perturbation of reference voltage to improve the system response,
and on the other hand, small step voltage size is employed with the operating point
near the MPP. This algorithm presents a fast and stable MPPT technique, which
tracks the MPP at various atmospheric conditions with a low number of sensors.
The proposed system is simulated on the MATLAB/Simulink environment, and the
simulated results are verified with experimental results using the laboratory scale
solar emulator system.

2 System Configurations

The solar PV system has the PV cell as its basic constituent. PV cells are connected
in series and/or parallel into what is called a PV module, and PV modules are wired
in series and/or parallel to build a PVArray. The I–V relationship is as given by [28];

I = Npr IPH − Npr ID

[
exp

(
q
{
Vpv + I Rs

}

NseK AT

)
− 1

]
− Vpv + I Rs

Rsh
(2)

where the parameters are described under the nomenclature. The irradiance, G and
temperature, T influence the light-generated current, IPH.

Vout = Vpv

1− D
(3)

In [28], the interrelation of subsidiary parameters to the parameters in Eq. (2) has
been fully expressed. See Table 1 for solar PV output characteristics for the standard
test conditions (STC). The STC of a photovoltaic module is a test performed at
irradiation of 1000W/m2, a temperature of 25 °C and an air mass of 1.5 (which is the
equivalent for Europe) in order to have a uniform test condition of the PV modules
thereby making it possible in conducting uniform comparison with PV modules
made by different manufacturers. Figures 2 and 3 demonstrate the solar I–V and
P–V characteristic with the variation of irradiation and temperature. As stated, the
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Table 1 Solar PV module
characteristics

Maximum power 165 W

Voltage at maximum power 220 V

Current at maximum power 0.75 A

Open circuit voltage 260 W

Short circuit current 1 A

1000W/m2

750W/m2

500W/m2

250W/m2

Fig. 2 Solar I–V and P–V characteristic curves for irradiation variation at 25 °C

DC/DC converter (boost converter) serves as an interface between the solar PV and
the load. It steps up the voltage, V pv from the solar PV to an output, according to
Eq. (3) based on the duty cycle, D which is set to 0 for an open switch and 1 for a
closed switch.

3 P&OMPPT Algorithms

The definition of the standard P&O MPPT algorithm clearly indicates that the out-
put power variation at the peak point of the P–V characteristic curve would be zero
(�Ppv = 0). The algorithm functions by performing perturbation (rising and declin-
ing) at the voltage of the solar PV and evaluates the resulting power P(n) to the initial
power before perturbation P(n−1). During the observation, if there is an increase in
the solar PV power (�Ppv > 0) after perturbation, the process of perturbation should
continue in the same direction else transposed to the reverse. The process of pertur-
bation is performed recurrently until MPP is achieved at (�Ppv = 0). The standard
P&O algorithm can be implemented where a reference voltage, V ref is essentially the
tool for perturbation. The V ref is compared with V pv and an error signal is achieved.
This is fed to a proportional integral (PI) controller which appropriately determines
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00C

750C

500C

250C

Fig. 3 Solar I–V and P–V characteristic curves for temperature variation at 1000 W/m2

the proportional gain, (Kp) and integral gain, (K i) to deliver a desired response. Once
the PV output power is fed to the boost converter, PI controller functions by regulat-
ing the duty cycle. Also, the duty cycle can be the perturbation tool, and the power
can be observed and computed at every pulse width modulation (PWM) cycle [29].

The step size determines the amplitude of steady-state oscillations at the MPP,
and the standard P&O algorithm is typically implemented using a fixed step size.
For a small step size, there is a trade-off as the steady-state oscillations are at the
barest minimum, but the dynamic response of the system to achieve MPP is slow
and a longer time is taken to achieve MPP. Alternatively, a large step size increases
the response of the system to achieve MPP and less time is taken to achieve MPP.
However, there is a considerable increase in the steady-state oscillation [21, 22].

The proposed P&O algorithm splits the P–V characteristic curve operational
region into four segments as exhibited in Fig. 4. This permits the implementation
of variable step size depending on the distance between the operating point and the
MPP. With a long distance from the MPP (segments 1 and 4), a large step size is
implemented to decrease the response time and cause less time to be taken to achieve
MPP. With a close distance to the MPP (segments 2 and 3), a small step size is
implemented to lessen the steady-state oscillations at the MPP. Figure 5 illustrates
the flow diagram for the proposed P&O algorithm. This approach eliminates the high
steady-state oscillation accompanied with a large step size, and it mitigates the poor
response of the system which creates a longer period to track the MPP due to a small
step size. It is also an efficient tracking during FCIC.
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Segment (1)

Segment (4)

Segment (3)

Segment (2)

Fig. 4 Proposed P&O MPPT concept

minmin

minmin

Fig. 5 Flow diagram of the proposed P&O MPPT algorithm
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4 Simulation and Experiment

A stand-alone solar PV system of the proposed system is simulated in the MAT-
LAB/Simulink environment to evaluate the performance. This comprises of a boost
converter placed in between solar PV array and resistance to serve as a load. AMOS-
FET gate signal controls the converter with a switching frequency of 10 kHz. 100 µf
capacitor and 3 mH inductor rating were used for filtering. The large step size of
0.01 and small step size of 0.0001 have been implemented for the P&O procedure.
For stable operation, these parameters have been achieved from the evaluation of the
boost converter topology based on the system power specifications.

Fig. 6 Output power for small step size standard P&O system

Fig. 7 Output power for large step size standard P&O system
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Fig. 8 Output power for proposed P&O system

To verify the performance of the proposed system over the standard system, a
rigorous profile of extreme atmospheric conditions were considered. Firstly, tests
were performed based on the standard and proposed P&O MPPT under STC for
UIC.

Further tests were performed on step changing irradiance and FCIC under the
standard temperature of 25 °C. The step changing irradiance profile is illustrated in
Fig. 9, and the FCIC is as illustrated in Fig. 13 [30, 31]. The tests were carried out
for 1 s duration. Figure 6 illustrates the solar PV output power for a small step size
under UIC. The results display no oscillations at theMPP. However, the systemMPP
tracking performance is poor as it takes 100 ms to achieve MPP. Figure 7 illustrates
the solar PV output power for a large step size under UIC. From the zoomed areas,
it displays improved MPP tracking performance with a response time under 10 ms
to achieve MPP. However, large steady-state oscillations exist around the MPP with
a peak difference of 1 W which eventually influences the solar PV output power.
Figure 8 illustrates the solar PV output power for the proposed system under UIC.
It is evident from the zoomed areas that the proposed system improves the time to
reach MPP and minimizes the steady-state oscillations. Thus, bringing together the
benefits of small and large step size systems and improving on their shortcomings.

The results of the test performed under the step changing irradiance profile on the
small step size and large step size standard and the proposed P&O MPPT systems
are illustrated in Figs. 10, 11 and 12. The small step size system takes a longer time
to achieve MPP for the different irradiances. For 250 W/m2, it takes 30 ms to settle
at an MPP of 44.64 W. To get to 750 W/m2, it takes 90 ms to settle at MPP. To get
to 1000 W/m2, it takes 100 ms to settle at MPP. In the same way, the large step size
system has a better tracking ability and achieves MPP in less time.

However, it displays high steady-state oscillations with a peak difference of 1 W.
The proposed system as illustrated in Fig. 12 improves the time to track MPP and
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Fig. 9 Step changing irradiance profile [30]

Fig. 10 Output power for small step size standard P&O system under step changing Irradiance

minimizes the steady-state oscillations. It clearly combines the advantages of small
and large step size systems and prevents the disadvantages attached to them.

Figure 14 illustrates the comparison between the theoretical results of solar PV
output power standardP&OandproposedP&OMPPT techniques. It clearly indicates
that the proposed system performs better than the standard one. The standard system
performs poorly for decreasing solar irradiance when the solar irradiance drop is
steep. This is typical as the standard system loses direction when tracking MPP for
FCIC. This poor performance is corrected with the proposed system (Fig. 13).

Figure 15 illustrates the tracking efficiency of the standard and the proposed
P&O system for the solar irradiance profile in Fig. 13 and this is calculated using
Eq. (1). From the result in Fig. 15, the proposed system is more efficient. The average
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Fig. 11 Output power for large step size standard P&O system under step changing irradiance

Fig. 12 Output power for proposed P&O system under step changing irradiance

efficiency for the standard system is 92.55% and that of the proposed system is
96.89%. There is, therefore, an improvement of over 4% (Table 2).

The performance of the standard P&O MPPT algorithm and the proposed P&O
MPPT algorithm was experimentally evaluated. Figure 16 shows the system set-
up for the experimental implementation of the solar PV system. The test bench
comprises of a digitally controlled HV solar MPPT DC-DC converter using texas
instrument C2000 piccolo microcontroller unit (MCU), current and voltage sensors,
PV power supply unit, digital oscilloscope, resistive load and a computer for MPPT
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Fig. 13 Fast-changing irradiance profile [31]

Fig. 14 Solar PV output power under step changing irradiance

implementation. For the duration of UIC, the PV power supply unit provides uniform
irradiance at a set percentage equivalent to 1000W/m2. The PV panel output voltage
and current are measured and then the measured values are used to compute the
required power by the MPPT algorithm. Vpv is applied to the boost controller of the
MCU; the hardware is regulated by the MCU by implementing four PWM outputs
and three feedback signals. The feedback signals implement the control loops of
the voltage and current for the boost controller. The PV panel provides an output
voltage of 220 V with an output current of 0.75 A, and the boost controller produces
an output voltage of approximately 403 V. The switch PWM signals minimize the
ripple in the PV panel current. The MPPT algorithm is responsible for determining
a set reference V pv_ref for the V pv by implementing a control system to regulate V pv
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Fig. 15 Solar PV tracking efficiency

Table 2 Comparative analysis of P&O MPPT techniques

Evaluated
parameters

Proposed
method

[33] [15] [14] [27]

Set-up Stand-alone
PV

Stand-alone
PV

Stand-alone
PV

Stand-alone
PV

Stand-alone
PV

Converter Boost Buck-boost Boost Boost Buck-boost

Tracking
method

Variable step
size based on
engendered
curve

Fixed step
size

Variable step
size

Confined
search space

Adaptive
step size

Application UIC and
FCIC

Ramp profile Step profile UIC and
FCIC

FCIC

Simulation or
experiment

Both Simulation Simulation Both Both

Conclusions Improved
efficiency for
UIC and
FCIC

Poor
performance
at low
irradiance

Steady-state
oscillation
reduced but
displays poor
initial
response

Reduced
response
time,
improved
steady-state
operation

Improved
steady-state
operation
and
efficiency for
FCIC

when it goes over or under the V pv_ref. The resistive load is connected to the output
of the boost converter and draws a current of 0.41 A. Another test is also performed
on step changing irradiance and the results are as illustrated in Figs. 17, 18 and 19.

In Figs. 17 and 18, the results for the hardware implemented PV system can be
seen under UIC. This shows that the P&O gets to the appropriate MPP which is
165 W. The proposed P&O system has a tracking ability that is better than that of
the standard P&O system as the standard P&O system takes 0.5 s to achieve MPP
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Digital Oscilloscope 

Current Sensor Voltage Sensor 

Power Supply Unit 

MPPT MCU Unit embedded 
with Boost Controller 

Resis�ve Load 

Computer to implement MPPT Algorithm    

Fig. 16 MPPT hardware implementation set-up

Fig. 17 Measured waveforms (Vpv, Ipv, Ppv) versus time for standard P&O MPPT under UIC

as against 0.02 s by the proposed P&O system. Figure 19 illustrates the tracking
ability of the proposed P&O system under step changing irradiance. This has been
achieved by varying the irradiance from 1000 to 500 W/m2 to 1000 W/m2. From the
results, the system performs properly as it tracks the MPP of 88 W at 500 W/m2 and
is capable of regaining the original MPP of 165 W at 1000 W/m2.
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Fig. 18 Measured waveforms (Vpv, Ipv, Ppv) versus time for proposed P&O MPPT under UIC

Fig. 19 Measured waveforms (Vpv, Ipv, Ppv) versus time for proposed P&O MPPT under step
changing irradiance

5 Conclusions

In this chapter, an improved P&O algorithm has been presented that enhances the
MPPT dynamic response, MPPT performance and decreases the steady-state oscil-
lations at the MPP of a solar PV system and improves its behaviour during certain
atmospheric conditions. This system splits the P–Vcharacteristic curve into segments
and carries out amulti-segment variable size control systemof variation of the voltage
step size. The proposed algorithm is simulated on MATLAB/Simulink and experi-
mented with a laboratory scale solar development system. The tracking efficiency
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of the proposed system, as well as its performance, are evaluated with the standard
P&O system. The simulation and measured results show a significant improvement
on the dynamic response as well as the steady-state oscillations. Ultimately, this
technique improves the overall system efficiency compared to the standard system
under various atmospheric conditions.
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Abstract The manifested merits associated with solar energy including high sus-
tainability, zero greenhouse gas emission and economic operation have encouraged
wide penetration of photovoltaic (PV) systems in the microgrid, during the last few
decades. However, the intermittency caused due to the fluctuating nature of solar irra-
diance demands an efficient maximum power point tracking (MPPT) algorithm for
PV-integrated microgrids. The scenarios related to partial shading and faults in PV
array impact the voltage–current behaviour resulting in the failure of conventional
MPPT techniques in accurately estimating the operating point. The incorrect estima-
tion by MPPT techniques quite often affects the operation of overcurrent protection
modules. In this regard, this chapter presents an accurate sine cosine optimization
(SCA)-based MPPT algorithm which will search the global operating point irre-
spective of the condition (i.e. in the event of partial shading or array faults), while
avoiding undesired activation of the protection system. Besides this, a reliable protec-
tion scheme is proposed to detect and classify the faults in the distribution line under
dual operating modes of microgrid (i.e. grid-connected and islanding). The instanta-
neous voltage–current signals recorded at the relaying bus are preprocessed through
discrete wavelet transform (DWT) to obtain the discriminatory attributes, which are
further utilized by the hybrid framework of artificial neural network (ANN) and SCA
to perform the intended protection tasks under both modes of microgrid operation.
The performance of the proposed MPPT technique and protection scheme has been
analysed against a wide range of operating scenarios with real-time validation on
OPAL-RT digital simulation platform.
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Acronyms

ANN Artificial neural network
BPNN Backpropagation neural network
DER Distributed energy resources
GMPP Global maximum power point
LMPP Local maximum power point
MSE Mean square error
MPP Maximum power point
MPPT Maximum power point tracking
PCC Point of common coupling
PLL Phase-locked loop
PV Photovoltaic
PVDG Photovoltaic distributed generator
SCA Sine cosine algorithm
SDG Synchronous distributed generator
VSC Voltage source converter

Symbols

D Dimension of objective function
F(x) Objective function
X Population
N Number of population
itermax Number of iterations
Xk,iter Position of kth solution
r1, r2, r3 Random numbers
ε Error constant
Vo, Io Array output voltage and current
d Duty ratio of DC–DC converter
∅ jk(t) Mother wavelet function
ylow[k] Output of low-pass filter
x Set of input samples
y Set of features
T Training dataset
ei Difference between actual and estimated value
Rf Fault resistance
Lf Fault location
θ f Fault inception angle
G PV irradiance
S1, S2, S3, S4 Sections of microgrid
L1, L2, L3, L4 and L5 Loads of microgrid system
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1 Introduction

The rising power demand and the increased emphasis on the reduction of fossil
fuels have motivated the search for an alternative source of energy. In this regard,
the adoption of distributed energy resources for providing reliable power supply
at the distribution level has introduced the concept of microgrid [1]. Over the last
few decades, photovoltaic (PV) power generation has gained widespread attention
as compared to other distributed energy resources in microgrids, due to its ease of
integration and sustainability of solar energy [2].

A primary challenge towards the reliable and efficient operation of any
photovoltaic-integrated microgrid system relates to the requirement of extracting
maximum power from the PV source irrespective of the operating condition. The
highly nonlinear nature of the I–V characteristics and its high sensitivity on irradi-
ance level and ambient temperature makes the task of maximum power point track-
ing (MPPT) quite challenging [3]. A large number of MPPT techniques have been
proposed in literature based on the algorithm employed, converter topology and
applications [4–10]. Majority of the reported MPPT works have been designed and
validated for standalone systems. Some of the recently proposed techniques in this
context include Monod equation-based tracking algorithm [4], power increment-
based technique [5], Bat algorithm-based scheme [6], global maximum power track-
ing algorithm [7], Cuckoo search-based maximum power point (MPP) method [8],
limited search space-based global MPPT [9], fuzzy logic-based tracking approach
[10, 11], MPPT algorithm based on artificial vision [12] and an improved perturb and
observe method [13]. Further, some of the MPPT algorithms have been developed
for grid-connected PV systems [14–16]. Most of the conventional MPPT techniques
are designed to operate only during uniform irradiance variation as determined using
past data. However, the variation in PV irradiance level is highly stochastic and does
not remain uniform throughout the day. Quite often, due to the occurrence of partial
shading, multiple peaks are obtained in the P–V curve, which are known as local
MPPs. So, to determine the global MPP among them is a challenge. In this regard,
various MPPT algorithms have been developed for PV systems with an objective
to track global MPP during partial shading condition [5, 6, 8, 17–20]. However, the
majority of existing MPPT algorithms have been devised for standalone systems
only and not extended for application in PV-integrated microgrids.

The limited works reported for MPPT in microgrids [21, 22] have not concen-
trated on the influence of distribution line faults, on MPP operation, and the effect
it would have on the protection scheme. Further, the impact of array faults on the
MPPT needs to be investigated during both islanding and grid-connected mode of
operation of the microgrid. In this regard, the present work is motivated by the need
to develop a reliable MPPT technique, which is insensitive to partial shading, array
faults, and distribution line disturbances, and further make the protection scheme
of the microgrid immune to the operation of MPPT. The immunity would disallow
any change in the operation of PV (due to partial shading or array faults), to affect
the operation of the protection scheme, thus preventing any maloperation of relay.
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In the absence of such immunity, there is high probability that the relay threshold
setting may be satisfied for faults/disturbances in DC (PV source) side without any
fault on the distribution end, thus leading to relay maloperation. Physical phenomena
which might result in such faults/disturbance include strong wind, stormy weather
and any improper connection between two points in the array that can initiate an arc.
Similar maloperation can also happen, when a fault on the distribution line may not
actuate the protection algorithm because of sudden reduction in the irradiance level.
In this regard, a MPPT algorithm has been proposed which is able to track the global
MPP during diverse operating and fault scenarios of the PV array as well as during
disturbances in distribution lines of the PV-integrated microgrid.

Further, the MPPT algorithm has been integrated with a ANN-based protection
scheme intended to perform the tasks of fault detection/classification and section
identification in both operating modes of the microgrid. Both the MPPT and protec-
tion tasks have been formulated as an optimization problem and solved using sine
cosine algorithm (SCA). The sine cosine optimization algorithm is a population-
based heuristic algorithm, which initiates with random parameterization and moves
towards the best solution using a trigonometric path [23]. For the protection algo-
rithm, the DWT-derived attributes from the raw voltage and current signals are fed
to the ANN modules for training to perform the necessary input–output mapping.
The use of SCA helps to obtain the ANN architecture with optimal weight and bias
parameters.

The contributions of the proposed work are outlined below:

(1) The tracking of MPP in the PV-integrated microgrids has been achieved using
sine cosine algorithm. The proposed MPPT technique takes care of variations
in solar irradiance levels and change in the operating point of PV source due to
partial shading and array faults.

(2) A protection algorithm for PV-integrated microgrid based on the com-
bined framework of SCA and ANN is proposed to perform fault detec-
tion/classification and section identification. The protection scheme is integrated
with the SCA-basedMPPT algorithm, which allows preventing possible malop-
eration of the relays under varying PV operation and distribution line scenarios.

(3) The proposed scheme has been extensively validated under different scenarios
involving partial shading and array faults, as well as different symmetrical and
unsymmetrical fault scenarios. Further, to validate the effectiveness of the pro-
posed scheme under practical settings, real-time simulations have been carried
out on the OPAL-RT digital simulation platform.

The chapter is organized as follows. In the next section, the microgrid system
under study is described with the MPPT control and array faults. Sections 3 and 4
describe the development of SCA-basedMPPT algorithm and the hybrid SCA-ANN-
based protection scheme, respectively. The performance evaluation of the proposed
MPPT and protection schemewith real-time time validation is summarized in Sect. 5
followed by the conclusion in Sect. 6.
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2 Modelling and Simulation of PV-Integrated Microgrid

The microgrid system considered in the present study has been represented by a
single line diagram in Fig. 1. The system operates at 34.5 kV, 60 Hz, with two
sources, i.e. synchronous (SDG) and inverter-interfaced (PVDG) DERs connected
at buses B3 and B4, respectively [24]. The line is divided into four sections, namely
(S1, S2) and (S3, S4) spread over the length of 20 km with L1, L2, L3, L4 and L5
representing loads. The power conditioning unit for interfacing PV array with the AC
grid includes a DC–DC boost converter equipped with SCA-based maximum power
point tracking (MPPT) algorithm, voltage source converter (VSC) with converter
control unit, and phase-locked loop (PLL) for synchronization.

The PVDG unit connected to bus B4 of the microgrid contains four shunt-
connected PV arrays as shown in Fig. 2. The power output of each array is fed
to the DC–DC converter and based on the voltage and current output of the array,
and the duty cycle of each converter is controlled by the proposed SCA-basedMPPT
controller to track the maximum power point. The PV arrays are formed by the
interconnection of modules in series–parallel arrangement as shown in Fig. 3. The
configuration of each array is composed of three parallel strings with four modules
in each string. In order to ensure the protection of PV array, a bypass diode is con-
nected across each module and blocking diode in each parallel string. During partial
shading, the bypass diode conducts to isolate the partially shaded module and hence
avoids the effect of undesirable hot spots. The task of blocking diode is to prevent
the back-feed current flow between the parallel connected strings [25]. In order the
analyse the performance of proposed SCA-based MPPT algorithm under different
operating conditions of the PV array, various types of array fault scenarios including
the line–line fault between the parallel string, line–line fault within the same string,
line–ground and partial shading have been simulated (discussed later in Table 2) as
marked for representation with the symbols #1, #2, #3, #4, respectively, in Fig. 3.
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Fig. 1 Single line diagram of PV-integrated microgrid under study
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Fig. 4 Three-phase instantaneous current recorded at bus B4 due to the line–line fault in the PV
array at t = 0.4 s

To analyse the effect of a fault in the PV array on the current profile in the distri-
bution line and hence on the possible maloperation of overcurrent relay, a line-to-line
fault in PV array has been simulated during the islanded mode and the correspond-
ing three-phase line current in bus B4 (Fig. 1) has been depicted in Fig. 4. It can be
observed that there is a substantial increase in the line current similar to symmet-
rical fault after the initiation of array fault. The threshold-based overcurrent relay
dependent only on the magnitude of line current will not be able to differentiate
between array fault and symmetrical fault, thereby providing tripping signal for both
the cases.

3 Proposed SCA-Based MPPT Scheme

3.1 Sine Cosine Optimization Algorithm

Sine cosine algorithm (SCA) is a recently proposed evolutionary optimization tech-
nique [23], which aims at maximizing the probability of obtaining globally opti-
mal solution for the optimization problem at hand. This is achieved by initializ-
ing the algorithm with a set of random possible solutions and iteratively oscillates
them around the best solution using trigonometric functions. The algorithm has been
found to be quite effective in solving complex nonlinear multimodal functions. For
the present problem of tracking MPP, SCA is used to solve the objective function
framed by quantifying the power derived from the PV source. Similarly for the pro-
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tection task, the objective function corresponds to the deviation between the power
system state (healthy or faulty) and the output of theANN trained to perform the tasks
of fault detection/classification and section identification. The optimizing variables
considered for the MPPT and protection-based optimization problems are duty ratio
and ANN architecture parameters, respectively. The initialized random variables for
both the problems are iteratively modified using sine and cosine functions until a
convergence criterion is achieved [23].

Similar tomost of the existing population-basedheuristic optimization techniques,
the overall task of minimizing the objective function in SCA is broadly composed
of two stages, i.e. exploration and exploitation. During the exploration stage, the
possible solutions are perturbed randomly along different directions with the aim
of locating regions with low value of objective function. In the exploitation stage,
relatively reduced perturbations with lesser randomness are imparted to the solutions
to move them closer to the globally optimal solution in the search space.

For solving the D-dimensional objective function F(x) with X =
[x1, x2, . . . , xD], assuming the SCA is initializedwith population size=N for itermax

number of iterations, the kth solution (k ≤ N ) in the first iteration is represented as:

Xk = [
xk1 , x

k
2 , . . . , x

k
D

]
(1)

Iteratively, the solutions are updated as

Xk,iter+1 = Xk,iter + r1 × sin(r2) × ∣∣r3Pk,iter − Xk,iter

∣∣ (2)

Xk,iter+1 = Xk,iter + r1 × cos(r2) × ∣∣r3Pk,iter − Xk,iter

∣∣ (3)

where Xk,iter represents the current position of kth solution at iteration = iter and
Xk,iter+1 is the updated solution. The parameters r1, r2, r3 are random numbers, and
Pk,i ter is the most optimal solution obtained till iter iteration.

The above equations can be combined by using a random number r4 as:

Xk,iter+1 =
{
Xk,iter + r1 × sin(r2) × ∣

∣r3Pk,iter − Xk,iter

∣
∣ r4 < 0.5

Xk,iter + r1 × cos(r2) × ∣
∣r3Pk,iter − Xk,iter

∣
∣ r4 ≥ 0.5

(4)

The parameters r1, r2, r3 and r4 are responsible for carrying out the search for the
global solution in N-dimensional space. The parameter r1 decides the movement of
the solutions in a particular direction; that is, it regulates the extent of exploration and
exploitation. For maintaining a proper balance between exploration and exploitation,
r1 is adopted to assume large values in the initial iterations, followed by reducing it
as:
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r1 = a − iter
a

itermax
(5)

where a is a constant. During the initial iterations, the possible solutions move ran-
domly in different directions. The initial movement relates to the wider exploration
of the search space with increased distance among the solutions. However, in the
later iterations, when some optimal directions towards the global solution are identi-
fied, the information is exploited for convergence towards the globally best position
in the search space. Following the selection of search direction, the perturbation
towards or away from the optimal solution is decided based on the control parameter
r2(0 < r2 < 2π). The influence of the destination point Pk,iter on the distance from
the present solution is incorporated in terms of r3 by taking r3 > 1 for emphasizing
the effect and r3 < 1 for deemphasizing the effect.

3.2 Proposed MPPT Algorithm

The application of SCA for solving theMPPT problem has been depicted in the form
of a flow chart in Fig. 5. The objective function solved by SCA for achieving MPPT
is given as:

max
d

f (d) = Vo × Io (6)

where d is the duty ratio for switching the DC–DC converter and Io is the array
current. With the PV array output voltage defined as Varray, Vo is given as:

Vo = Varray

1 − d
(7)

For an initially generated population of duty ratios with 0 < d < 1, the algorithm
is executed by updating the initial duty ratios using (4). The power extracted from
the PV array for the corresponding duty ratio is compared with the power obtained
in the previous iteration for determining the optimality of d. The iterative process
of updating the duty ratio is carried out till no significant improvement in the power
extracted from the optimal solution is observed for some successive iterations.
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Fig. 5 Flow chart of sine cosine optimization-based MPPT algorithm

4 Development of Proposed Protection Scheme

The reliable operation of amicrogrid demands a fast and reliable protection technique
to detect/classify faults and identify the faulty section for early restoration of power
supply. In this regard, a protection scheme based on combined framework of wavelet
transform, SCA, and ANN has been proposed in this chapter for both grid-connected
and islanded operation.
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4.1 Feature Extraction

Wavelet transform is a widely used tool to analyse and register the pattern obtained
post-occurrence of any disturbance or fault in the power system. It splits the signal
into various scales corresponding to different frequency patterns through translation
(shift in time) and dilation (compression in time) of mother wavelet [26]. The mother
wavelet can be represented by the following relation:

∅ jk(t) = 2− j/2φ
(
2− j t − k

)
(8)

where k, j ∈ Z (integers).
Analysis of a signal is carried out by wavelets using multi-resolution technique at

different resolution and frequencies. The decomposition of an sampled input signal
x(n) carried out through low-pass Butterworth filtering is governed by the following
equation:

ylow[k] =
∑

x[n] · h[2k − n] (9)

where ylow[k] is the output of low-pass filter h[n] obtained after down sampling by 2.
In the present work, a total of 12 signals including B1 and B4 bus voltage, current in
sections S1, S2, S3 and S4 for all the three phases A, B and C have been considered
for the feature extraction process. The feature variables consisting of the standard
deviation of approximate coefficients of signals obtained using DWT are represented
as:

y = [sVa1, sVb1, sVc1, sVa2, sVb2, sVc2, s Ia1, s Ib1, s Ic1, s Ia2, s Ib2, s Ic2] (10)

The training dataset containing of x input samples and y feature variables has been
formulated as:

T = {(
xi , y j

)
, i = 1, 2, . . . , N ; j = 1, 2, . . . , 12

}
(11)

In order to demonstrate the distinct behaviour of derived features, the stan-
dard deviation of approximate wavelet coefficients derived from the current signal
obtained at bus B1 through the simulation of AG fault against variation in PV irra-
diance level (100–1000 W/m2), fault location (1–16 km), fault resistance (0–100 �)
under grid-connected and islanded mode is depicted in Fig. 6a, b, respectively. Pre-
processing and feature extraction are followed by the development of SCA-ANN-
based classification module for performing fault detection/classification and section
identification separately for both modes of microgrid operation.
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4.2 Development of Hybrid SCA-ANN Algorithm for Fault
Detection/Classification and Section Identification

The present subsection discusses the development of the proposed SCA-ANN pro-
tection algorithm for performing the tasks of fault detection/classification and section
identification. The intended tasks have been framed as a classification problem and
solved using feedforward ANNs. For this, the microgrid under study has been sim-
ulated for wide scenarios involving variation in both PV operating and distribution
line fault parameters.

Owing to the limitation of local convergence to suboptimal solution in the conven-
tional gradient-based back-propagation algorithm for training feedforward ANNs,
SCA has been adopted for deriving the optimal architecture and parameters (weights
and biases) of ANN modules. For this, the objective function has been framed using
the mean square error (MSE) between the ANN and actual output as

f (x) =
∑n

i=1 e
2
i

n
(12)

where ei represents the deviation between ANN and simulated model output for
the ith training data and the optimizing vector X comprises the biases of individual
neurons and the weights connecting the different neurons in the ANN architecture.
The SCA has been used to solve (12) by initializingwith a set of random combination
of weights and biases. For each combination, the ANN is simulated for a particular
operating state of the microgrid. The various states simulated during the training
phase of the ANN consist of varying irradiance (100–1000 W/m2), different types
of array faults, varying distribution line fault parameters (fault resistance, inception
angle and location) under dual operatingmodes (Islanded and grid-connected)modes
of the microgrid. The various permutation and combination of the PV operating and
fault parameters together with some healthy scenarios constitute the training and
testing dataset of the ANN. The deviation between the simulated output of the ANN
and the actual system output is calculated for all the training samples. Using SCA, the
initial weight and bias values are updated till convergence, with the aim of reducing
f (x) in (12).
The overall process of deriving the features representing the operation of the

power system and further using them to train the ANN and hence iteratively derive
the optimal ANN structure using SCA has been described in Fig. 7 [27]. The details
of the optimal architecture obtained using SCA for ANN-1 to ANN-4 modules are
described in Fig. 8. For all the neurons, tangent sigmoid activation function has
been used. Post-convergence of SCA, the trained ANN, describes the most optimal
mapping between the extracted features for different cases with the corresponding
state (faulty/healthy) and further the fault type and section (if applicable).

The proposed protection scheme comprises of different ANN modules dedicated
to perform specific tasks.ModulesANN-1 andANN-3 have been assigned to perform
fault detection/classification task under grid-connected and islanded mode, respec-
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Fig. 7 Flow chart of SCA-ANN-based protection algorithm
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Fig. 8 Proposed protection scheme based on DWT and SCA-ANN

tively. The section identification task to determine the faulty section is performed by
the modules, ANN-2 and ANN-4, respectively, for the grid-connected and islanded
mode. The fault detection/classification module provides an output regarding the
state of the distribution line (faulty or healthy) and occurrence of array fault (if any).
For all the modules, a total of twelve neurons in the input layer representing the input
attribute derived using DWT are selected. The total number of neurons in the output
layer is five for each module. For ANN-1 and ANN-3, the 5-bit output represents
the state of the line (first four bit corresponding to fault in phases A, B, C, G and the
last bit for external PV array fault). For ANN-2 and ANN-4, first four bit represents
the faulty section in the distribution line and the last bit represents the occurrence of
external fault. Based on the output of fault detector/classifier and section identifier,
regarding the fault type and faulty section, respectively, relaying decision is made to
generate trip signal to respective breaker for isolation of the faulty feeder.
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5 Performance Evaluation

The effectiveness of the proposed SCA-based MPPT and microgrid protection
scheme has been examined in this section, in terms of achieving the twin objec-
tives of maximum power extraction from the PV source and providing protection
to the distribution line against symmetrical and unsymmetrical faults. The MPPT
technique has been validated against wide variation in the irradiance levels, different
types of array faults and faults in the distribution system. Similarly, the protection
scheme for the PV-integratedmicrogrid has been validatedwith regard to its response
against faults in both islanded and grid-connected mode and also under disturbances
(irradiance variation and array faults) in the PV operation. The validation allows
examining the immunity of the MPPT scheme to variation in the operating scenario
of the distribution line and also of the protection scheme on the variation in the PV
operation.

5.1 Validation of SCA-Based Proposed MPPT Scheme

As mentioned earlier, the SCA-based MPPT scheme discussed in Sect. 3 aims at
extracting maximum power from the PV source under varying irradiance resulting
from weather intermittency and array faults. For the different cases simulated for
validating the scheme, MPPT is being achieved while the microgrid is in operation.
The performance of the proposed SCA-basedMPPT technique in tracking the global
maximum power point (GMPP) has been described in the following subsections.

5.1.1 Partial Shading

Partial shading conditions are characterized by non-uniformdistribution of PV irradi-
ance level across the modules of the array. In such cases, multiple peaks are obtained
on the power–voltage curve of the array. Tracking the GMPP among the multiple
peaks is the main challenge for any MPPT scheme. In this regard, to examine the
effectiveness of the proposed SCA-based MPPT technique against different par-
tial shading profiles, seven patterns involving variation in irradiance levels across
the modules have been generated. The power–voltage characteristics of the array,
depicting the GMPP for each pattern, are shown in Fig. 9. The first pattern contains
single peak, as it has been simulated considering uniform irradiance of 1000 W/m2

across themodules, whereas other patterns contain three local maximum power point
(LMPP) and one GMPP.
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Fig. 9 Power–voltage curve of PV array for the patterns 1–7

Table 1 Performance of proposed SCA-based MPPT scheme during partial shading conditions

Pattern Irradiance levels (kW/m2) Position of
GMPP
peak

Power at
GMPP
(kW)

Tracking
efficiency
(%)

G1 G2 G3 G4

Pattern-1 1 1 1 1 1st 2100.05 100.00

Pattern-2 1 0.8 0.6 0.2 3rd 1028.73 99.84

Pattern-3 0.95 0.75 0.65 0.25 2nd 821.5 99.57

Pattern-4 0.925 0.625 0.375 0.175 2nd 692.71 99.89

Pattern-5 1 0.525 0.95 0.125 1st 1008.06 99.50

Pattern-6 1 0.525 0.95 0.125 1st 2016.12 98.70

Pattern-7 1 0.525 0.95 0.125 2nd 1950.4 99.98

Overall tracking efficiency (%) 99.64

The performance of the proposed MPPT scheme has been analysed in terms of
the tracking efficiency (%) [28], which is defined as the ability of a MPPT technique
in extracting maximum power from the available power of the array. The obtained
results are summarized in Table 1. The overall average tracking efficiency of 99.64%
shows the efficacy of proposed scheme against different partial shading conditions.
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Fig. 10 Power–voltage curves under normal and line–line fault in PV array

5.1.2 PV Array Faults

During faults in the PV array, theMPPT schemes aim at optimizing the output power.
This causes a significant reduction in the array current, thus leading tomaloperation of
overcurrent relays due to underreach. In the course of tracking theMPP, the operating
array voltage is reduced (Fig. 10) to increase the power [2]. Hence, it is required to
test the performance of the proposed MPPT scheme with regard to PV array faults.
The occurrence of faults in the PV array may contain some resistance due to the poor
contact between the fault points. In this regard, the performance of the proposedSCA-
based MPPT scheme has been substantiated against the PV array faults including
line–line and line–ground with wide variation in fault parameters (fault resistance
and location). The high degree of tracking efficiencies (%) obtained by the proposed
MPPT technique against each type of array fault simulated at specified locations
(Fig. 3) as summarized in Table 2 confirms the effectiveness of the scheme in tracking
the global MPP without misguiding the protection devices.

5.2 Validation of SCA-ANN-Based Protection Scheme

The pattern of data (both training and testing) generated by simulating the micro-
grid system under different operating scenarios involving PV array faults (line–line
and line–ground) and all the 11 types of fault (symmetrical and unsymmetrical)
in distribution line for both the operating modes are summarized in Table 3. The
no-fault cases include PV irradiance variation, partial shading and load variation.
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Table 2 Performance of proposed scheme under faults in PV array

Type of array
fault

Fault parameters Performance of proposed scheme

Fault
location

Fault
resistance
(�)

Power at
GMPP (kW)

Tracking
efficiency
(%)

Fault
detector
output

Line–line Between
points P1
and P2

1 856.98 99.35 PV fault

Between
points P1
and P4

5 936.56 99.12 PV fault

Between
points P3
and P4

10 1194.62 98.86 PV fault

Between
points P2
and P3

15 1056.39 99.65 PV fault

Line–ground Between
points P1
and ground

5 1253.29 98.87 PV fault

Between
points P5
and ground

10 1345.69 99.34 PV fault

Low
irradiance

… … No-fault

A total number of 19,450 cases were generated, comprising of 19,000 distribution
line faults and 250 PV array faults in each operating mode of the microgrid. From
the data generated, 70% of the cases have been used to train the respective ANN
module and the rest 30% is utilized for the testing purpose.

The performance of the proposed SCA-ANN-based scheme has been evaluated
by analysing the effectiveness of fault detector/classifier and section identifier in
accurately detecting/identifying the fault type and faulty zone under each mode of
microgrid operation. The detailed result analysis of each protection module has been
discussed in the subsequent subsections.

5.2.1 Fault Detection/Classification

To examine the appropriateness of the proposed SCA-ANN-based scheme in accu-
rately performing the tasks of fault detection/classification, the performance of the
modules ANN-1 and ANN-3 (detailed in Sect. 4.2) has been analysed in this subsec-
tion. The fault-wise performance of proposed fault detector/classifier modules under
different operating scenarios is detailed in Table 4, in which an overall accuracy
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Table 3 Pattern of data generation

Parameters Specification Mode of operation Total number of
casesGrid-

connected
Islanded

Distribution line

Fault types AG, BG, CG, AB,
AC, BC, ABG,
ACG, BCG, ABC,
ABCG

11 11 38,200

Fault section pairs (S1, S2), (S3, S4) 2 2

Fault resistance, Rf
(in �)

1, 50, 100 3 3

Irradiance range, G
(W/m2)

100–1000 19 19

Inception angle, θ f
(in o)

0, 90 2 2

Fault location, Lf
(in km)

1–20 km (in steps
of 2 km)

10 10

No-fault cases Load variation
(5–40%) and PV
irradiance variation

100 100

PV array

Fault types Line–line,
line–ground

250 250 700

Partial shading
conditions

20–50% 100 100

of 99.37 and 98.79% has been obtained, respectively, for the grid-connected and
islanded mode operation of the microgrid.

The reliability assessment of the proposed SCA-ANN-based fault detector and
classifier has been performed in terms of the following statistical indices:

(i) Dependability: It quantifies the possibility of misdetection of fault and is
accounted as the percentage of the total number of correctly predicted fault
cases to the total number of actual fault cases.

(ii) Security: It is related to the possibility of generating false alarms and is expressed
as the percentage of the total number of no-fault cases correctly predicted to the
total number of actual no-fault cases.

The higher degree of dependability and security shown in Table 5 validates the
effectiveness of the proposed fault detector/classifier in providing protection against
wide variation in operating conditions during both grid-connected and islandedmode.
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Table 4 Performance of the proposed SCA-ANN-based fault detector/classifier

Type of fault No. of test
cases

Grid-connected mode
(ANN-1)

Islanded mode (ANN-3)

Misdetection Accuracy (%) Misdetection Accuracy (%)

AG 958 0 100.00 1 99.90

BG 958 3 99.69 5 99.48

CG 958 4 99.58 3 99.69

AB 228 1 99.56 6 97.37

AC 228 5 97.81 5 97.81

BC 228 1 99.56 2 99.12

ABG 958 3 99.69 7 99.27

ACG 958 5 99.48 6 99.37

BCG 958 0 100.00 7 99.27

ABC 228 1 99.56 3 98.68

ABCG 958 4 99.58 0 100.00

PV fault 75 2 97.33 3 96.00

No-fault 60 0 100.00 1 98.33

Overall Accuracy (%) 99.37 98.79

Table 5 Performance indices of proposed fault detector/classifier

Mode of
operation

Fault case No-fault cases Performance indices

Actual Predicted Actual Predicted Dependability
(%)

Security (%)

Grid-
connected

7693 7664 60 60 99.62 100

Islanded 7645 59 99.37 98.33

5.2.2 Section Identification

The performance of section identification modules (ANN-2 and ANN-4) has been
analysed in this section. The section-wise classification accuracy (%) of eachmodule
has been summarized in Table 6. It can be observed that the proposed SCA-ANN-
based section identifier is efficiently contributing to providing the intended protection
to microgrid by achieving an accuracy of 99.65 and 99.38%, respectively, for grid-
connected and islanded mode.
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Table 6 Section-wise performance of section identification modules

Performance of section identifier

Sections No. of actual
test cases

Mode of operation

Grid-connected (ANN-2) Islanded (ANN-4)

No. of
correctly
predicted
cases

Accuracy (%) No. of
correctly
predicted
cases

Accuracy (%)

S1 1538 1538 100.00 1537 99.93

S2 2308 2304 99.83 2305 99.87

S3 1538 1536 99.87 1535 99.80

S4 2308 2305 99.87 2307 99.96

Ext 75 74 98.67 73 97.33

Overall accuracy 99.65% 99.38%

5.3 Real-Time Validation

The analysis required for the validation of a MPPT and protection scheme for micro-
grid system involves complex computations, which might be difficult to implement
on a digital platform. Hence, to test the feasibility of the proposed SCA-basedMPPT
and SCA-ANN-based protection scheme for real-time settings, the microgrid system
shown in Fig. 1 has been implemented on OPAL-RT (OP5600) platform and the per-
formance has been analysed. The OPAL-RT digital simulation platform facilitates
the interfacing of microgrid system modelled in MATLAB/Simulink environment
to the RT-LAB software, which enables faster execution through parallel computing
to obtain precise results. The interaction of the proposed protection algorithm with
the OPAL-RT digital simulation platform has been demonstrated in Fig. 11. The
time-domain voltage and current signals recorded at the relaying buses are extracted
through the input–output channels of OPAL-RT. The signals are processed through
discrete wavelet transform (DWT) to obtain the input features which are further used
as input to the SCA-ANN-based protection module for making the final relaying
decision. The experimental set-up demonstrating the interface of microgrid system
with the OPAL-RT hardware is depicted in Fig. 12. To validate the response of pro-
posed scheme, an ACG fault has been simulated at t = 4.5 s in section S3 during
islandedmode, with the parameters, S = 650W/m2,Rf = 1� andLf = 3 km. The pre-
and post-fault voltage and current recorded at bus B1 are shown in Figs. 13 and 14,
respectively. The appropriateness of the proposed scheme in providing the intended
protection to the microgrid even under low irradiance level has been substantiated by
the generation of trip signal post 11 ms of the fault inception as depicted in Fig. 15.

The response of the proposed scheme has been analysed against wide variation
in operating scenarios under dual operating modes (grid-connected and islanded)
of PV-fed microgrid. As observed from the real-time results, the proposed SCA-
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Inception of ACG fault at t = 4.5s

Fig. 13 Three-phase voltage at bus B1 during an ACG fault at t = 4.5 s

Inception of ACG fault at t = 4.5s

Fig. 14 Three-phase current at bus B1 during an ACG fault at t = 4.5 s
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Fig. 15 Trip signal generated by the relay at t = 4.511 s

ANN-based scheme is found to generate the trip signal within 1 cycle (16.67 ms) of
the fault inception, which confirms the suitability of the scheme for practical field
applications.

6 Conclusions

The rising power demand and the stress on the use of sustainable energy resourcewith
low carbon emission have given a fillip to the use of PV-integrated microgids. How-
ever, the highly stochastic nature of PV operation resulting from varying irradiance
levels, partial shading and faults in PV array poses a great challenge for the existing
MPPT schemes to track the global MPP for PV-fed microgrids. Also, the MPPT
algorithm influences the protection schemes and quite often misguides the relaying
operation leading to its maloperation (underreach and overreach). In this regard, a
SCA-basedMPPT and a SCA-ANN-based protection scheme have been proposed to
meet the dual objectives of tracking the maximum power under partial shading and
array faults as well as providing intended protection to the PV-integrated microgrid
against faults in PV array and distribution lines (symmetrical and unsymmetrical
faults) under both modes of microgrid operation. The proposed MPPT and protec-
tion scheme has been validated against diverse operating conditions of both the PV
and distribution system. The obtained result confirms the efficacy of the developed
scheme in meeting the dual objectives. To examine the performance of the proposed
scheme for practical settings, it has also been substantiated by performing real-time
simulation on OPAL-RT platform.
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Artificial Bee Colony-Based GMPPT
for Non-homogeneous Operating
Conditions in a Bifacial CPVT System

Cihan Demircan, Ali Keçebaş and Hilmi Cenk Bayrakçı

Abstract Photovoltaic (PV) modules directly convert the solar energy into elec-
tricity with electrical efficiency in 10–20%. The rest of the incident solar radiation
reflects from front surface and converts into thermal energywhich leads to an increase
in the PV module temperature. Thus, PV module efficiency decreases. PV power
production can be increased with utilize of thermal energy or cooling of PV mod-
ule. Photovoltaic–thermal (PV/T) technologies provide both electricity and thermal
energy. PV/T absorbs thermal energy from PV module which may lead to decrease
the PV module temperature. Thus, its electrical efficiency is higher with respect to
PV systems. However, PV/T collectors suffer for high capital costs. To improve their
profitability, many concentrating PV (CPV) have been developed to increase the inci-
dent solar radiation on the PV surface, simultaneously reducing PV material for unit
receiver area. Both electricity and thermal energy from the sun more effectively is
used with this mechanism called concentrating photovoltaic–thermal (CPVT) tech-
nology. This chapter focuses on artificial bee colony (ABC)-based global maximum
power point tracking (GMPPT) for PV string structures in a bifacial CPVT system.
This power conditioning unit is applied to bifacial CPVT system for efficient uti-
lization of solar energy under four different non-homogeneous solar radiation and
module temperature operating conditions.
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1 Introduction

Renewable energy resources (RESs) are energy types that are not consumed, are
environmentally friendly, and have intermittent energy. The limited nature of energy
and the increasing energy demands every day have increased the importance of
efficiently using energy that can be produced from energy resources. For continuity of
electrical energy, it is necessary to ensure energy demands can bemet by diversifying
energy resources. RESs are superior as they can be easily integrated into the power
grid and can supply energy requirements for rural areas distant from the power grid.
With the fall in initial investment costs in recent years, interest in solar energy as
RES has increased from both society and industry, institutions, and organizations.

Photovoltaic (PV) cells are a popular issue of solar energy because they do not
have a moving part in electricity generation, they do not harm the environment, they
can be easily integrated into buildings, and they can reach thousands of MW power
from a fewWatts. In other words, PV module prices are decreasing each year thanks
to the increase in the installed capacity of PV in the world.

The fact that solar energy is intermittent and variable and that PV performance
depends on solar radiation, ambient temperature, andwind speed increases the impor-
tance of using output power effectively in PV modules. In other words, studies are
carried out to increase the module efficiency in PV modules. Two important envi-
ronmental parameters affecting the performance of PV modules are solar radiation
andmodule temperature. In recent years, concentrating systems have been developed
to increase the radiation coming to the PV module surface, and active and passive
cooling systems are carried out in order to reduce the temperature of the module.

In the concentrating PV (CPV) technology, the amount of solar radiation coming
to the PV surface is increased. In this way, an extensive solar radiation is reflected
onto the PV module from a curved reflective mirror with wide area. However, the
increase in solar radiation in CPV systems causes the temperature of the PV mod-
ules to increase. Therefore, PV modules can be permanently damaged at extreme
temperatures. To prevent this, PV cells are actively or passively cooled. For active
cooling a fluid and a channel through which it flows are used. Thus, both electric-
ity and thermal energy are produced from solar energy. Such systems are called as
concentrating PVT (CPVT).

In CPVT systems, solar radiation at each point on the groove (cylindrical, trian-
gular, etc.) has the same value. On the one hand, the fluid cools the PV modules,
respectively, while the fluid flows along the groove, but, on the other hand, its tem-
perature increases as the fluid flows along the groove. Thus, the fluid temperature
increases. Due to the increase in temperature as the fluid reaches the end of the
groove, the cooling amount of the PV modules at the end is reduced. The tempera-
ture of a PV module is higher than the previous one. The fluid reaches the maximum
temperature at the end of the groove. Therefore, non-homogeneous temperature dis-
tribution occurs in PV modules. In addition, there are differences in the current and
voltage values of the PV modules.
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In PV systems, in cases where the distribution of temperature and solar radiation
is not homogeneous, as mentioned above, mismatches occur in the current–volt-
age–power curves. The occurrence of these mismatches causes a loss of power. PV
power regulation units are becoming more important in order to minimize the loss
of mismatch.

The performance of PVmodules varies according to material properties and envi-
ronmental conditions (temperature, solar radiation, etc.). Power regulation units are
used to make the PV modules more efficient in the production of power mismatches,
to use them in the most efficient way, and to ensure the highest level of power transfer
to the output load. Power regulation equipment is DC/DC converters. The converter
provides the connection between the PV modules and the load. Maximum power
point tracking (MPPT) algorithms are the ones that provide the most efficient power
to the load. The MPPT devices that monitor the output power of the PV transmit
the highest power by controlling duty cycles of the DC/DC converters. The focus is
on maximum power point (MPP) tracking (MPPT) systems ensuring effective use
of electrical energy from concentrator photovoltaic–thermal systems (CPVT) using
electrical and thermal energy from solar energy. Rezk and Eltamaly [1] compared
and assessed MPPT algorithms based on perturb and observe (P&O), incremental
conductance (INC), hill climbing (HC), and fuzzy logic (FLC) for photovoltaic sys-
tems. Their results showed that FLC-MPPT algorithms were superior to the other
algorithms. In other their studies, authors reviewed and discussed of evaluation index
of MPPT algorithms [2]. Algarin et al. [3] compared FLC-based MPPT and P&O
MPPT structures for a 65 W PV module. The results demonstrated the superiority
of the FLC-based MPPT in terms of settling time, power loss, and oscillations at the
operating point. Tang et al. [4] combined a traditional FLC algorithm with fractional
order (FO) structure and improvedMPPT performance. They compared the proposed
FO-FLC structure with classic FLC and FO-INC algorithms and proved the proposed
structure was better than others. Boukenoi et al. [5] investigated P&O, INC, HC, and
FLC-MPPT structures experimentally. For an efficient MPPT power regulation unit,
studies were completed on the Takagi–Sugeno fuzzy model by Ounnas et al. [6].
Yilmaz et al. [7] completed studies on FLC-MPPT for a battery charge control unit
for PV. Zainal et al. [8] recommended an FLC-based constant voltage (CV) MPPT
system structure for a cooling-integrated PV system.

Based on environmental andworking conditions, the current–voltage values at the
MPP display differences. Therefore, the tracking power gains great importance. Due
to environmental conditions like buildings, trees, and dust, partial shading reduces
the PV power output [9, 10]. In circumstances with partial shading, more than one
MPP forms. These are defined as local and global MPP. To produce maximum levels
of power from solar energy, the DC–DC converter should work at the globalMPP. As
a result, it becomes evenmore important thatMPPT algorithms track power in partial
shading conditions. TraditionalMPPT techniques provide superior performancewith
uniform radiation distribution. However, in non-uniform partial shading situations,
tracking power at the global point is unsuccessful as more than one MPP forms [11,
12]. Hence, research is performed about intelligent global MPPT techniques track-
ing power at the global point. The use of GMPPT algorithms from among artificial
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intelligence optimization algorithms developed in engineering has come to the fore
in recent years. For these, both experimental and simulation studies are performed
to improve the working performance of PV systems, and thus, solar energy is used
more efficiently and effectively. Rezk et al. [13] compared different meta-heuristic-
based GMPPT algorithms under partial shading. Benyoucef et al. [14] tested the
artificial bee colony (ABC) algorithm for the MPPT technique with simulation and
experimental studies under different shading conditions. The results obtained were
compared with particle swarm optimization (PSO) algorithm. Seyedmahmoudian
et al. [15] combined differential evolution (DE) and PSO algorithms for a PV system
and completed both simulation and hardware applications with the hybrid algorithm
structure. Sundareswaran et al. [16] completed both simulation and experimental
studies with the ABC algorithm to increase PV power output under partial shading
conditions. They compared the ABC-MPPT power regulation unit with classic PSO
and enhanced P&OMPPT techniques. Javed et al. [17] applied a generalized pattern
research (GPR) algorithm to a partial shading PV system and compared with tradi-
tional P&O and PSO algorithms. Kumar and Rao [18] tested the whale optimization
algorithm for different PV system connections and partial shading conditions and
compared with the grey wolf optimization (GWO) algorithm and PSO algorithm.
Kaced et al. [19] presented both simulation and experimental applications of the bat
algorithm for partial shading conditions. Ram and Rajasekar [20] completed both
simulation and experimental work on the flower pollination algorithm (FPA) for
GMPPT power regulation. Similarly, the Lider PSO algorithm was applied by Ram
and Rajasekar [21] and compared with the P&O and traditional PSO algorithm. Rezk
and Fathy [22] assessed six different shading conditions in learning–teaching opti-
mization algorithm-based MPPT studies. The artificial fish swarm algorithm was
applied to a GMPPT unit by Mao et al. [23]. Wu et al. [24] applied the chicken
swarm optimization method to a PV-MPPT system. PSO and GWO based hybrid
FLC-MPPT studies presented in [25, 26]. Finally, ABC and hill climbing-based
hybrid single sensor MPPT study published in [27].

In this chapter, the electrical performance of the standard and bifacial CPVT
systems were investigated under four different circumstances. In the bifacial CPVT
system, mismatch losses in current and voltage as temperature along with solar radi-
ation are not homogeneous andmore than one peak point forms in a series-connected
PV strings. As a result, this study applied the ABC algorithm to track the global peak
point of the MPPT unit for effective and efficient use of solar energy in a CPVT
system. A study of the proposed bifacial CPVT system is not found in the litera-
ture. However, there are studies about standard CPVT systems. Bernardo et al. [28]
performed application and simulation of a parabolic-trough-triangular design CPVT
system for three different locations. They were concluded that the CPVT system
produced 3.6–4.4 times more electricity for three different places than the conven-
tional PV system. Calise and Vanoli [29] designed and simulated a CPVT with triple
groove using zero-dimensional energy balances. The effect of triple groove length
and fluid channel diameter on temperature distribution and thermal and electrical
performance of CPVT system were investigated. It has been observed that the length
of the groove and the diameter of the fluid channel increase the CPVT operating
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temperature, thus decreasing both thermal and electrical efficiency. Similarly, Calise
et al. [30] modeled the same CPVT system with finite volumes method. They inves-
tigated the temperature distributions, electrical and thermal efficiency of the CPVT
system at 10 and 20 m lengths, and the exergy efficiency of the system according
to different fluid flow rates. As the length of the CPVT system increased, the fluid
output temperature increased, and therefore, the electrical and exergy efficiencies
decreased slightly. It was seen that the fluid output temperatures decreased rapidly
between 85 and 110 °C at the rate of 0.1 kg/h, and the thermal and electrical effi-
ciency increased rapidly. Calise et al. [31] presented the energy and environmental
performance simulation of a CPVT system for a desiccant-based air handling unit.
According to the results, CPVT system provided approximately 60% of the ther-
mal energy requirement. The energy saving was found to vary between 81 and 89%
according to the water heating requirement. Finally, Manokar et al. [32] investigated
the performance of a water-cooled CPVT system. They examined the change in PV
cell temperature relative to the solar radiation for the standard PVT and triangular
CPVT.

2 System, Modeling, and Optimization

In this section, the standard and proposed bifacial CPVT systems are described. In
addition, necessary information about the mathematical modeling of PVmodules for
the CPVT systems, the MPPT power conditioning units playing an important role in
PV systems, the optimization process of the ABC algorithm, and some case study
applications are presented.

2.1 Parabolic-Trough Bifacial CPVT System

A schematic diagram for the parabolic-trough CPVT system is given in Fig. 1. As
seen in this figure, this system consists of a parabolic-trough concentrator, a hollow
triangular prismatic groove, a duct through which the fluid flows in the groove, and
PV modules joined on the groove. It is contemplated that the mirror is used along
the concentrator. The triangular groove is placed in the focus of the concentrator.
One surface of the triangle groove is positioned perpendicular to the sunbeam, while
the other two surfaces face the concentrator. The PV module series are mounted on
two surfaces that are opposite with the reflector. A fluid duct is inserted into the
hollow triangular prismatic groove to cool the PV modules and thereby increasing
the electrical efficiency. The PV modules are cooled by any type of cooling fluid
flowing through this fluid duct. Therefore, the temperature of the fluid exiting the
CPVT system is increased. This fluid temperature can be used in thermal energy
applications, e.g., space heating. Thus, in CPVT system thermal energy is used
along with electrical energy. Additionally, the upper surface of the triangular section
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Fig. 1 General schematic diagram of the CPVT system

Fig. 2 Design differences of CPVT systems: a the standard CPVT system, and b the bifacial CPVT
system

is the cooling surface in standard CPVT systems, while in the proposed bifacial
CPVT system a PV module string is designed in this surface. This means that all
surfaces of the triangular prismatic groove are covered with three PVmodule strings.
Its schematic diagram is shown in Fig. 2. As seen in the figure, while the standard
CPVT systemuses twoPVmodule strings on only two surface of the groove (Fig. 2a),
the bifacial CPVT system uses three PV module strings on all surfaces of the groove
(Fig. 2b).

While the amount of radiation on the PV module surfaces is almost the same on
both surfaces of the standard CPVT system, in the bifacial CPVT system it is nearly
the same for the two PV module strings facing the parabolic-trough concentrator;
however, it is different for the sun-facing surface of the groove. In other words,
while the two PVmodule strings in both systems use direct radiation, the PVmodule
string on the sun-facing surface in the bifacial CPVT system uses total radiation.
When examined in terms of temperature, the cooling degrees of the PVmodules will
be different as the different fluid temperature occurs in each node along triangular
prismatic groove; however, mismatch occurs due to non-homogeneous temperature
circumstances in PV modules in both systems. In addition, due to connections of
the PV modules and their strings, the behavior under non-homogeneous working
conditions can be investigated using current, voltage, and power graphs.

A diagram associatedwith non-homogeneous working conditions due to radiation
and temperature naturally occurring in the standard and bifacial CPVT systems is
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Fig. 3 Non-homogeneous operating conditions of the CPVT system with two and three strings

presented in Fig. 3. Here, total radiation and direct beam radiation are taken as 1000
and 800 W/m2, respectively. The concentration rate of the CPVT system is chosen
as 2.5. As the fluid heats up with each step, it is assumed that the temperatures of the
PV modules will increase from 45 to 57 °C. Based on these assumptions, some case
studies and assessments are performed.

2.2 Mathematical Modeling of PV

Modeling is required to investigate the dynamic behavior of PV modules under
certain conditions. The single diode model [33–38], double diode model [39, 40],
and transistor models [41] have been developed to model the nonlinear dynamic
behavior of PV modules. The most commonly used model in the literature is the
single diode model. The single diode model based on four parameters considers
series resistance, while the five-parameter-based model considers series resistance
along with parallel resistance values. The equivalent circuit based on five parameters
for PV modules is shown in Fig. 4. In this chapter, the single diode model with five
parameters is used. The correlations between current and voltage for the four- and
five-parameter-based models of a PV module are given in Eqs. (1) and (2).

Io = Ipv − Id
(
e

q(Vo+Rs Io)

nkT − 1
)

(1)
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Fig. 4 Five-parameter PV
equivalent circuit

Io = Ipv − Id
(
e

q(Vo+Rs Io)

nkT − 1
)

− Vo + Rs Io
Rp

(2)

where Io, Ipv, and Id donate the load, PV, and diode currents, respectively; q is
electron charge, n is diode ideality factor, k is the Boltzmann constant, and Rs and
Rp are series and parallel resistance values.

In short-circuit current and open-circuit operation conditions [33],

Isc = Io − Id
[
e

q IscRs
nkT − 1

]
− IscRs

Rp
(3)

0 = Io − Id
[
e

qsVoc
nkT − 1

]
− Voc

Rp
(4)

where Isc and V oc represent short-circuit current and open-circuit voltage, respec-
tively.

According to PV module temperature, Isc and V oc values estimated as the follow-
ing,

Isc,T = Isc
(
1 + λ

(
Tpv − 25

))
(5)

Voc,T = Voc
(
1 + β

(
Tpv − 25

))
(6)

where λ, β, and T pv shows that current–temperature coefficient, voltage–temperature
coefficient, and PV module temperature.

The parameters for the PV modules used in this chapter are given in Table 1.
Their mathematical modeling is performed in the MATLAB/SIMULINK program
[42] using the PV module parameters for the five-parameter equivalent circuit. With
the aid of the modeled PV module, five modules are connected as series to obtain a
PV module string.
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Table 1 Datasheet values of
the TPS105S-5W PV module
[43]

Parameter Value Parameter Value

Isc (A) 0.32 Voc (V) 21.5

Imp (A) 0.29 Vmp (V) 17.5

λ (%/K) 0.05 β (%/K) −0.32

Sizes (cm) 19.3 × 23.3 Weight (kg) 0.54

2.3 DC–DC Converter

The power conditioning units in PV systems consist of the MPPT units and DC–DC
converter. Maximum power point tracking (MPPT) units that monitor the output
power of the PV transmit the highest power by controlling duty cycles of the DC/DC
converters. Therefore, MPPT algorithms control the duty cycle ratio (D). Controlled
linked to the current and voltage values at the maximum power point, this parameter
varies between 0 and 1. The pulse width modulation (PWM) is set according to
this value. The value when the switching element for the PWM signal is closed
(signal= 1) (ton) represents the ratio of the switching time rate to the duty cycle ratio.
For switching elements, generally metal oxide semiconductor field effect transistors
(MOSFET) and isolated gate bipolar transistors (IGBT) are used. According to the
D value calculated by the MPPT algorithm, the PWM signal is produced. This signal
reaches the MOSFET or IGBT and ensures control of the DC–DC converter. These
parameters are updated according to the current and voltage input–output values, and
thus, maximum power tracking occurs.

2.4 Artificial Bee Colony Algorithm

Investigation of processes involving intelligent behavior present in nature has encour-
aged researchers to develop new optimizationmethods. Karaboğa [44] developed the
artificial bee colony (ABC) algorithmmodeling the food search behavior of bees. For
the sake of simplicity, the model based on the developed ABC algorithm includes
some assumptions. The first of these is that the number of employed bees is equal
to the total number of food sources. The number of employed bees is accepted as
being equal to the number of onlooker bees. The bee assigned to a source with nectar
consumed transforms into a scout. The food source locations represent the possible
solutions to the optimization problems, and the nectar amounts in the food sources
are equivalent to the quality (fit) of the solutions related to that source. While the
ABC optimization algorithm attempts to find the location of the source with most
nectar it attempts to find points providing the minimum or maximum of a problem
in solution space.
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Onlooker beeswaiting in the hivewatch dances indicating rich sources and choose
a source linked to the dance frequency which is proportional to the quality of the
food.

The basic steps of the ABC algorithm are as follows [45]:

Step 1: production of initial food source regions.
REPEAT
Step 2: sending employed bees to the food source regions.
Step 3: calculation of probability values according to information coming from
employed bees using probabilistic selection.
Step 4: see Eq. (9).
Step 5: abandoning consumed sources and producing scouts
UNTIL (cycle number = maximum cycle number).

If we consider search space as food sources found around the hive, production of
the initial food source region is based on the algorithm producing random food source
locations equivalent to solutions in search space. The random location production
process occurs by producing random values between the upper and lower limits for
each parameter, as follows:

xi j = xmin
j + r and (0, 1)

(
xmax
j − xmin

j

){
i = 1, . . . ,SN
j = 1, . . . SD

(7)

Calculation of quality,

fitnessi

{
1

1+ fi
, fi ≥ 0

1 + abs( fi ), fi < 0
(8)

The ratio of a source’s fit value to the sum of fit values of all the sources refers to
the probability of that source’s chance of being selected relative to the other sources,
as expressed below:

pi = fitnessi∑SN
j=1 fitness j

(9)

At the end of each cycle, counters check whether the solution development occurs
after all employed bees and onlooker bees have completed search processes.Whether
a bee has used a source or not, in other words whether the nectar has been consumed
or not, is known by the solution abandonment counters. If the solution abandonment
counter for a source is above a certain threshold value, this source must be left by
the employed bee as it is consumed and the bee must begin to search for another
solution. This means the employed bee associated with the consumed solution must
become a scout. After becoming a scout, this bee begins the random solution search
process. The threshold value used to determine whether a source is consumed is
an important control parameter in the ABC algorithm and is called the “limit.” In
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the basic ABC algorithm, only one explorer bee is allowed to search in each cycle.
Detailed information about theABCalgorithmmay be found in the related references
[46, 47].

The colony size, colony cycle number, and limit values of the ABC algorithm
were chosen as 10, 10, and 100 in this study. An Intel Processor i7-6700HQ CPU
2.60 GHz, 16 GB RAM 64 bit ASUS computer was used.

3 Case Studies for CPVT Systems

PV strings of CPVT system are investigated and compared with four different case
studies in order to effect of concentrating in CPVT system. Standard and proposed
CPVT systems are considered with and without concentrating. Firstly, first case
focus on standard test conditions (STC) (1000W/m2, 25 °C) operating conditions of
PV strings. On the other hand, other case different (non-homogeneous) temperature
distribution of CPVT strings is investigated for effect of temperature increasing due
to fluid. In the other two different cases, concentrating of CPVT system and their PV
string connections are taken into account. Details of four different case studies are
presented below.

Case 1: Consider operation under STC for PV strings belonging to standard and
proposed CPVT systems.
Case 2: Consider operation under non-homogeneous working conditions shown in
Fig. 13.3 with 1000 W/m2 solar radiation for PV strings belonging to standard and
proposed CPVT systems.
Case 3: Consider operation under non-homogeneous circumstances shown in Fig. 3
along with total and direct beam solar radiation values of 1000 and 800W/m2 for PV
series belonging to standard and proposed CPVT systems. Serial connection between
the PV strings is considered.
Case 4: Consider operation under non-homogeneous circumstances shown in Fig. 3
along with total and direct solar radiation values of 1000 and 800W/m2 for PV series
belonging to standard and proposed CPVT systems. Parallel connection between the
PV strings is considered.

In order to evaluate four different cases, CPVT system is modeled as an algorithm
developed on MATLAB/SIMULINK program. Modeled system is shown in Fig. 5.
As can be seen in this figure, a boost converter and inverter connect to PV system. The
Ipv and V pv values are tracked when runned MPP operation on CPVT system. Duty
cycle of the boost converter is optimized in order to be operated MPP of inverter
or load. Its value is selected between 0.3 and 0.9 in optimization process. Thus,
ABC-based GMPPT application is implemented.
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Fig. 5 ABC-GMPPT application of proposed CPVT system using MATLAB/SIMULINK

Flowchart of ABC-based GMPPT power conditioning unit is given in Fig. 6. As
shown in Fig. 6, the Ipv and V pv values are measured in each bee position after the
initialize. Changing objective function (Ppv) is observed at each aD value. According
to this change, boost converter is operated at MPP in optimum D value and then
tracking of maximum power is done.

4 Results and Discussion

In this study, electrical performance of PV strings belonging to the standard and
proposed CPVT systems was investigated under different working conditions. The
performanceof theMPPTpower conditioningunitwas investigated according to peak
points formed in situations where the strings are connected in series or in parallel.
Under different conditions, the duty cycle is maximized with the ABC algorithm to
transfer the load to power at maximum value.

The PV modules were modeled in the MATLAB/SIMULINK program to investi-
gate the performance of PV strings belonging to the CPVT system. The single diode
model was used for PV mathematical modeling. Additionally, to reduce losses due
to partial shading of the PV strings under any conditions, bypass diodes are added.
The electrical power produced by the CPVT system is transferred to inverter using
a DC–DC boost. A 5 mH inductor with 100 μF input capacitor is used.
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Fig. 6 Flowchart of
ABC-GMPPT applications
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Fig. 7 I–V and P–Vgraphics PVmodule for 25 °Cmodule temperature and different solar radiation

The datasheet values for a TPS105S-5 W PV module are presented in Table 1.
According to the datasheet values, the results under standard test conditions (STC)
(1000 W/m2, 25 °C) and obtained with different radiation conditions are shown in
Fig. 7 (red line). As seen in the figure, when module voltage is 17.5 V, the maximum
value of output power (5.07 W) is reached and then falls. Due to the nonlinear
behavior of the PV modules, output power falls rapidly as open-circuit voltage is
approached. Additionally, PV power works close to maximum power in the interval
from 17.2 to 17.7 V. For different module temperatures at 1000 W/m2, the I–V and
P–Vcurves for the PVmodule are given in Fig. 8. The increase inmodule temperature
increases the Isc value by a very small amount and reduces V oc voltage by a larger
proportion. As a result, the PV module power reduces. This indicates a nonlinear
situation is present.
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Fig. 8 I–V and P–V graphics PV module for 1000 W/m2 solar radiation and different module
temperature

Variation of the PV module output power according to environmental conditions
is variable due to the nonlinear situation of the current and voltage values which
increases the importance of maximizing the output power value obtained from the
PV module. As a result, there is a need for power conditioning units.

Four different case studies were examined for the standard and proposed CPVT
system. In Case 1, the performance of the PV strings was investigated under STC.
The current, voltage, and power variations for this case are presented in Fig. 9. As
seen in the figure, the maximum power that can be obtained from a standard system
is 60.91 W, while it is 91.37 W for the proposed CPVT system. If both systems are
operated at the MPP with nearly 105 V, the proposed system produces 50% more
electrical energy compared to the standard system.
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Fig. 9 PV performance changing for Case 1

Table 2 Performances of the CPVT system for different case studies

Cases CPVT Imp (A) Vmp (V) Pmp (W) Isc (A) Voc (V)

Case 1 Standard 0.5801 105 60.9105 0.64 127.7

Proposed 0.8702 105 91.371 0.96 127.7

Case 2 Standard 0.5904 92.32 54.505728 0.649 116.5

Proposed 0.8742 93.59 81.816378 0.9735 116.5

Case 3 Standard 0.5728 179.6 102.87488 0.6452 240.3

Proposed 0.564 177.1 99.8844 0.6452 357.7

0.3029 303.5 91.93015

Case 4 Standard 1.15 89.79 103.2585 1.292 120.1

Proposed 1.451 89.79 130.28529 1.617 120

When non-homogeneous temperature distributions due to thermal energy are con-
sidered for the CPVT system (Case 2), the power for the standard and proposed
systems fall to 54.51 and 81.82 W. Operation at the maximum power point brings
voltage to 92.32 V. The variation graphs for this case are shown in Fig. 10. As seen in
the figure, temperature increase reduces the open-circuit voltage value from 127.6 V
(Case 1) to 116.5 V. The detailed values for these cases are given in Table 2. Other
parameters may be investigated on this table.
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Fig. 10 PV performance changing for Case 2

When the concentrated and direct beam radiation values are considered alongwith
non-homogeneous temperature distributions due to thermal energy in the CPVT sys-
tem, only the non-homogeneous temperature case is present in the standard system.
However, the non-homogeneous case due to both temperature and radiation is present
in the proposed system. As a result, the connection types for the PV strings in the
system are assessed. The serial connections (Case 3) and parallel connection (Case
4) are considered for the PV strings. Variations obtained from both types are shown
in Figs. 11 and 12. As seen in the figures, more than one peak forms in the proposed
CPVT system due to the differences in PV current due to radiation in the serial-
linked system. At the same time, the maximum power that can be produced by the
proposed system is a little lower than from the standard system. In other words, the
power values at the MPP for the standard and proposed CPVT systems are 102.87
and 99.88W. The voltage and power values at the local peak point are nearly 303.5 V
and 91.93W. It can be understood that operation of the MPPT unit at the global peak
point becomes very important to increase power production and efficiency. In the
parallel-linked systems (Case 4, Fig. 12), there is a single peak point. At the same
time, the power gain is nearly 30% higher compared to the serial-linked system.

Above, assessment of the four cases is presented. For assessment of the situation
where global peak point tracking can be completed for theMPPT power conditioning
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Fig. 11 PV performance changing for Case 3

unit in the CPVT system, the working conditions for the proposed CPVT system in
Case 3 and Case 4 were considered.

The ABC-based GMPPT application results completed in this study are given
in Fig. 13. As mentioned previously, the performance of the ABC-GMPPT power
conditioning unit was assessed under working conditions in Case 3 and Case 4. As
observed in the figure, there are fluctuations due to the transitional circumstances
in the time period from 0 to 0.125 s. After 0.125 s, the system operates close to
maximum power, but occasional 1–2 W power reductions occur. As understood
from Figs. 11 and 13, the system (Case 3) Vmp values are in close regions and thus
power production and load transfer occur at the global peak point (nearly 100 W).
As shown in Fig. 13, parallel linking of the PV strings in the system both reduces
the effect of mismatch due to non-homogeneous radiation and temperatures and
increases power production. Finally, the parallel connections of PV strings increase
the power production. If more than one peak point occurs due to any circumstance,
the ABC algorithm-based GMPPT techniques unit will ensure power is transferred
to load at the maximum level. In this way, the use of solar energy may be completed
more efficiently and effectively.
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Fig. 12 PV performance changing for Case 4

5 Conclusions

It is very important to consider the effect of system and environmental conditions
on PV performance when planning photovoltaic systems. In this study, standard and
bifacial (proposed) CPVT systems had performance variation investigated consid-
ering four different working conditions. The MPPT power conditioning units used
between the PV systems and load performed global point power tracking using
the artificial bee colony. The results obtained show that more than one peak point
forms under non-homogeneous radiation and temperature conditions if the proposed
CPVT system has PV strings connected in series and less power production occurs
compared to parallel-linked PV strings. Under these conditions, the designed ABC-
GMPPT techniques unit transfers to the load at the maximum power point and thus
effective and efficient use of solar energy occurs.
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Fig. 13 ABC-GMPPT application results for proposed CPVT system in different case studies
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MPPT of PV System Under Partial
Shading Conditions Based on Hybrid
Whale Optimization-Simulated
Annealing Algorithm (WOSA)

Ahmed A. Zaki Diab

Abstract In this chapter, a hybrid optimization algorithm of whale optimization
algorithm with simulated annealing (WOSA) has been proposed for tracking the
global maximum power point (MPP) for photovoltaic (PV) system under partial
shading condition (PSC). Themain target of this chapter is to discuss the performance
of the PV system under partial shading. Also, the chapter introduces a novel hybrid
optimization algorithm to enhance the overall performance of the PV system under
different conditions of operation. MATLAB/Simulink package has been used to
evaluate the proposed algorithm. The results demonstrate that, the hybrid WOSA
has a good efficiency of tracking with acceptable convergence speed.

Keywords Partially shaded PV system · Hybrid optimization technique · Whale
optimization-simulated annealing algorithm (WOSA)

1 Introduction

The power generation efficiency of the PV system is significantly low. Moreover, the
power generated is largely dependent on intermittent weather conditions and there-
fore these sources show low reliability [1, 2]. As the photovoltaic unit has nonlinear
characteristics, it makes the output power significantly affected by changes in solar
radiation, ambient temperature, and the load [3–5]. The efficiency of the PV solar
system can be increased by tracking the point of maximum power point (MPP);
therefore, MPP tracking for the PV system under normal and transient condition is
an important point for researchers in order to obtain the best operation and reduce the
cost of the generated units from such a system [6–8]. Bypass diodes can be connected
in shunt with the modules. In this case, these diodes have no effect in the normal
operating condition, but when the modules are subjected to shadow effect, the cur-
rent is transferred through the forward biased diodes instead of the modules. As a
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result, the P–V characteristics a partially shaded PV module will have various local
peaks, but only one global peak. Since the global maximum point is rather track-
ing, traditional methods for tracking MPP are less efficient under PSC. The classical
techniques for MPP tracking, such as incremental conductance (INC), incremental
resistance (INR), hill climbing, perturb and observe, fuzzy logic, and neural network
have not the flexibility to differentiate between the global and local points of the peak
power, which in turn leads to a reduction in the tracking system efficiency [3–7]. In
the last years, various modern techniques, which rely mainly on optimization tech-
niques, were explored for catching theMPP [8–16]. The major objective for all these
techniques is to raise the efficiency of the PV generating system when operating
under PSC [8]. A number of optimization techniques such as genetic [9], PSO [10],
ant colony optimization [11], and cuckoo search [12] optimization algorithms are
applied forMPPT in the PV systems under PSC. Furthermore, differentmetaheuristic
optimization techniques are tested and compared for MPPT of the PV systems under
different PSC in [13]. In [14, 15], the artificial bee colony (ABC) technique is pre-
sented and evaluated based on the simulation and experimental testes. Reference [16]
introduced a hybrid differential evolution and PSO (DEPSO) for catching the MPP
in the PV system with experimental tests. In [17], a comparison between the gray
wolf optimization (GWO) and PSO techniques-based tracker is introduced. In [18],
FPA for MPPT is simulated and tests with hardware configuration. Other techniques
have been applied for MPPT in the PV systems under PSC such as learning-teaching
optimization algorithm [19], the artificial fish swarm algorithm [20], and the chicken
swarm optimization technique [21]. Other techniques have been presented and ana-
lyzed [8]. Moreover, in [22, 23], a number of optimization algorithms which applied
for tracking the MPP under various patterns of shadow have been comprehensively
analyzed. The comparison results show that slap swarm optimization technique and
flower pollination algorithm and hybrid particle swarm optimization-gravitational
search algorithm (PSOGSA) have the best performance rather than other techniques
such as PSOwith respect to the convergence speed and tracking efficiency. However,
a novel dynamic global MPP tracker based on hybrid GWO-FLC of the PV systems
under partial shading has been presented in [24]. Also, a hybrid PSO-FLC algorithm
had been proposed to deal with the problem of MPPT of the partially shaded pho-
tovoltaic system in [25]. The presented results show that the hybrid GWO-FLC and
hybrid PSO-FLC algorithm deal effectively with the problem ofMPP of the partially
shaded photovoltaic system.

With the increased installations of the PV energy systems, effective algorithms
for MPPT have to be developed for enhancing the efficiency of conversion of the
PV plants under PSC. In the present chapter, a solution for tracking the PV system’s
MPP when partially shaded, based on the application of WOSA hybrid optimization
algorithm, is introduced. The target from applying the optimization algorithm is to
access the globalMPP,which can be generated from thePVsystem, not the local ones.
The performance of the MPP system has been assessed using MATLAB/Simulink
simulation package. The main contributions of this chapter can be written as follows:
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• MPPT of PV system under partial shading based on a novel hybrid WOSA algo-
rithm is presented.

• The purpose of hybridization between the two algorithms of WOA and SA is to
improve the tracking performance and efficiency of PV systems.

• The proposed algorithm is validated using simulation tests of a considered PV
system under different shading patterns. In this chapter, the evaluation of the
proposed hybrid WOSA algorithm based on six different shading conditions has
been presented.

• The results of the applied hybrid optimization technique are compared with those
obtained by only WOA and SA algorithms to prove the effectiveness and superi-
ority of the proposed methodology.

2 PV System Under PSC

Figure 1 shows the design of PV system configuration which used in the chapter to
evaluate the different optimization techniques. The system configuration has (8S1P
configuration) comprises of 8 panels in one string. Each module has 72 series
connected multi-crystalline silicon cells with maximum power of 51 W. The total
extracted power from the model at standard conditions is 400 Wp (i.e., 8 × 51 W)
[26]. Table 1 illustrates random patterns for telling the effect of PSC. In the tested
module, it is assumed that each two connected panels are exposed under the same
irradiance. The performance of the PVmodule under uniform irradiance of 1 kW/m2

and under different five random patterns has been displayed in Fig. 2. The figure
shows the power versus voltage and current versus voltage curves. From the figure,
with varying the PSC conditions, the characteristics of the PVmodules are reformed.
As example, under uniform irradiance the maximum extracted power from the PV
system is 404.9 W and the P–V curve has one MPP. But under the third pattern, the

Table 1 Different partial shading patterns for tests cases W/m2 and the maximum power point
under each case

Irradiance MPP Irradiance MPP

Uniform
irradiance

1000
1000
1000
1000

404.9 W PSC pattern
#3

1000
800
600
400

199.4 W

PSC pattern
#1

1000
1000
400
400

197.6 W PSC pattern
#4

1000
1000
800
800

342.5 W

PSC pattern
#2

400
800
1000
1000

261.3 W
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Fig. 1 Simulink model for PV system (each two series modules have the same irradiance)

maximum power is 199.4 W, and it is located at the second peak from three peaks in
the P–V curve. Furthermore, the MP for the different pattern was given in Table 1.

3 Whale Optimization Algorithm (WOA)

Application of the metaheuristics algorithms for solving the optimization problems
to reach and determine the global optima without mathematical derivation and with
simple, flexible mechanism is considered one of the aspects of recent research. The
whale optimization algorithm (WOA) has been built on the whale hunting technique.
This pursuing procedure is called bubble net feeding strategy.Humpbackwhaleswant
to chase little fishes near the surface bymaking bubble net around the prey rises along
a circle path as shown in Fig. 3. The mathematical formulation of this phenomenon
can be written as [27–29]:
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D =
∣
∣
∣
−→
C · −→

X∗(t) − −→
X (t)

∣
∣
∣ (1)

X(t + 1) = −→
X∗(t) − −→

A · −→
D (2)

where t is the iteration,
−→
A and

−→
D are the coefficient vectors,

−→
X∗ indicates the vector

of the best solution,
−→
X indicates the position vector, || indicates the absolute value,

and · indicates an element-by-element multiplication. The position vector of best

solution
−→
X∗ is updated when a better solution is found.

−→
A = 2�a · �r−�a (3)

−→
C = 2 · �r (4)

where �a in Eqs. (3) and (4) is linearly diminished from 2 to 0 through the number
of iteration (in investigation and exploitation stages) and �r is an arbitrary vector
in the range of [0, 1]. This parameter is random to achieve the balanced between
exploitation and investigation stages.

A. Bubble-net assaulting strategy (exploitation stage):

Two approaches are utilized to figure the air bubble net conduct of humpback whales
as below:

I. Shrinking circling system:

Equation (3) has explained this approach. The fluctuation scope of A is additionally
diminished by a. As such, A will be random in the interval [−a, a], where a is
diminished from 2 to 0 throughout iterations.

−→
A is in [−1, 1], the new position of

Fig. 2 Characteristics of PV system under different patterns of irradiance
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a search operator has been estimated between the first position of the agent and the
position of the present best agent. Figure 3a displays the probable positions from (X,
Y ) in the direction of (X∗,Y ∗) which can be accomplished by 0 ≤ A ≤ 1 in a 2D
space.

II. Spiral updating position:

This approach shown in Fig. 3b depends on determining the distance between the
whale located at (X, Y ) and prey located at (X∗,Y ∗). Equation (5) represents the
spiral path between the position of whale (current position) and prey (best solution).

−→
X (t + 1) = −→

D′ · ebl · cos(2πl) + −→
X∗(t) (5)

where
−→
D′ = −→

X∗(t) − −→
X (t) demonstrates the separation of the ith whale to the prey

(best solution), b is a constant for characterizing the state of the logarithmic spiral

Fig. 3 a Bubble net search
spiral updating position
mechanism, b bubble net
search shrinking encircling
mechanism [27, 28]
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and in this work its value is taken equal to 1 and l is a random number in between
[−1, 1] and varied at each iteration. Whales swim around the prey inside shrinking
circle and along a spiral form. There is a probability of half to select one of two
approaches as shown:

−→
X (t + 1) =

{−→
X∗(t) − −→

A · −→
D if p < 0.5−→

D′ · ebl · cos(2πl) + −→
X∗(t) if p ≥ 0.5

(6)

where p is an arbitrary number in the range between [0, 1]. It is generated using a
random function and is varied at each iteration.

B. Scan for prey (investigation stage)

whales pursue randomly as per the position of each other. Thus,
−→
A is utilized with

the random values more than 1 or under −1 to make search agent to move far from a
reference whale. The position of search agent has been updated in the investigation
stage as per an arbitrarily picked search agent rather than the best pursuit agent

exposed in this way. This scheme and
∣
∣
∣
−→
A

∣
∣
∣ > 1 highlight investigation and tolerate

the WOA calculation to perform a global pursuit. The mathematical expression can
be written as follows:

D =
∣
∣
∣
−→
C · −→

X rand − −→
X

∣
∣
∣ (7)

−→
X (t + 1) = −→

X rand − −→
A · −→

D (8)

The flowchart of WOA technique is depicted in Fig. 4. Moreover, the pseudocode
of WOA can be expressed as the following:

Initialize whales positions
Find the current best position X*
while (termination criterion does not meet)
for each whale position
Update a, A, C, l, and p
If p < 0.5
If |A|< 1
Update position according to Eq. (2)
else if |A|> 1
Select position x randomly
Update position according to Eq. (8)
end
else if p > 0.5
update position spirally using Eq. (5)
end
end
Adjust position inside search space boundaries
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Fig. 4 Flowchart of WOA technique, where Xi is the duty cycle and the fitness is the PV power
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Update the current best position X*
end
return X*
end procedure

4 Simulated Annealing

Simulated annealing (SA) is one of the metaheuristic optimization techniques. It is
presented first time byKirkpatrick et al. [30]. Moreover, SA can avoid the problem of
selecting a local optimal solution based on a certain probability. As general, a random
initial solution has been generated to start the algorithm. After that, at each iteration,
the solution will be generated based on evaluation of a fitness function and a well-
defined neighborhood mathematical structure [30–32]. The global optimum solution
is reached based on selecting the neighbor which is fitter than the old point. However,
the worst one will be taken into consideration with a certain probability P = e−θ/T to
avoid the local optimum solution. Where θ equals the difference between the fitness
of best solution and the trail solution. Furthermore, T is a variable parameter with
iterations (called the temperature) [30–32]. The flowchart of the SA algorithm has
been shown in Fig. 5. The basic SA algorithm is as follows:

Sol = Generate Initial Random Solution ()
T = initial temperature (T_0)
WHILE termination conditions not met
sol1 = Pick_At_Random (of the neighborhood N(s))
Evaluation of a fitness function
IF fitness (sol1) > fitness (sol)
sol = sol1
ELSE
Accept sol1 as new solution with probability p(T,sol1,sol)
ENDIF
Update (T)
ENDWHILE
Output the Best Solution
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Fig. 5 Flowchart of SA algorithm
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5 Hybrid WOSA

The search process in metaheuristic optimization has two phases of exploration
and exploitation [33]. This process differs from algorithm to other based on the
algorithm nature. The balance between exploitation to determine the local optimum
and exploration to effectively determine the global solution is very effective in the
performance of any optimization technique. So, the optimization techniques must
randomly explore the global solution in the search space. Then, the second phase
of exploitation to search for the optimized solution around the promising area(s) of
the search space is activated. Exploitation concerns to the local search ability in the
region space around the determined solution by the exploration phase. The proposed
hybrid WOSA is to find this suitable balance between the two phases. The results
show also the WOA fails for solving a few optimization problems.

In literature, two main types of hybridization models from the different opti-
mization techniques have been reported. The first one is called low-level teamwork
hybrid (LTH). In the LTH hybrid model, one optimization technique is embedded to
aid for searching the global optimal solution from the neighbors. The second model
of hybridization models is called high-level relay hybrid (HRH). In HRH model,
one algorithm is applied after applying the second algorithm and finding the optimal
solution. Here in this work, the SA algorithm is used to enhance the best solution of
the WOA technique. The flowchart of the In HRH model for WOSA optimization
technique has been shown in Fig. 6.

6 Results and Discussions

The evaluation of the proposed WOSA technique is done based on MAT-
LAB/Simulink package. The MPP trackers have been tested under different con-
dition of operation. In each case of study, the tracking efficiency and convergence
speed have been visualized and compered against the WOA and SA algorithms.
Figure 7 shows the Simulink model of the overall PV system with MPP tracker. The
PV system consists of PV module, DC/DC boost converter (switching frequency of
30 kHz). The input inductance is 1 mH and output capacitor is 47 µF with 60 �

resistive loads. The using of the optimization algorithm aims to generate the duty
cycle for DC/DC converter for extracting the maximum power from the PV module.

Case 1 The first case of study is under uniform irradiance and normal temperature as
1000W/m3 and 25 °C, respectively. The performance of the hybridWOSA optimiza-
tion algorithm was be compared with the performance of SA and WOA techniques.
The results of this case to evaluate the three optimization techniques have been shown
in Fig. 8. The figure shows the WOSA has the better performance rather than the
two other algorithms. The time simulation results of the PV system have been shown
in Fig. 9. From the results, it is clearly shown that the hybrid WOSA algorithm can
track the MPP faster than the WOA technique while the SA technique is failed to
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Fig. 6 Flowchart of the In HRH model for WOSA optimization technique
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Fig. 7 Simulink model of the overall PV system with optimized MPP tracker

Fig. 8 Convergence curve and duty cycle versus iterations system for WOA, SA, and WOSA
techniques under uniform irradiance

catch the MPP. The proposed technique can reach the MPP at 3 iterations while the
WOA algorithm reaches at 7 iterations.

Case 2 The first pattern of partial shading has been studied in this case of study. The
convergence curves of the PV system for the three algorithms have been shown in
Figs. 10 and 11. The figures demonstrate that the WOSA has the best convergence
curvewith acceptable convergence speedof 7 iterations.While theWOAcannot catch
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Fig. 9 Detailed simulation results for the performance of PV system under uniform irradiance
shading pattern; WOA, SA, and WOSA-based trackers

the MPP, the SA algorithm can determine the MPP at 8 iterations. The efficiency of
tracking of the hybrid algorithm is better than in the case of WOA or SA techniques.
The simulation validation of the PV systemwith the three trackers has been shown in
Fig. 10. The figure shows the superiority of the PV system with the hybrid WOSA-
based tracker.

Case 3 In this case of study, the second pattern has been assumed in simulation tests.
The power of the PV system under this case of study has three peaks and the second
peak is the global MPP. Figure 12 shows the convergence curves and the duty cycle
via iteration for the three presented algorithms. Again, the WOSA base tracker has
the best performance with 5 iterations of convergence characteristics. Moreover, the
dynamic simulation of the PV system with the three algorithms has been shown in
Fig. 13.

Case 4 Formore validating of the hybridWOSA algorithm, the third shading pattern
has been assumed in this case of study. Figures 14 and 15 show the convergence
performance of the three algorithms and the time simulation of the PV system under
the third shading pattern. The results prove the superiority of the hybrid WOSA
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Fig. 10 Detailed simulation results for the performance of PV system under first shading pattern;
WOA, SA and WOSA-based trackers

optimization algorithm for tracking the global MPP. The results show that the hybrid
WOSA technique reaches the MPP faster than the other two algorithms.

The fourth pattern is selected in this case of study. In this case of study, the P–V
curve has two peaks. Moreover, the MPP is the second peak point. The results of
such tested case have been shown in Figs. 16 and 17. The figures show that the
hybrid WOSA-based tracker has the best performance rather than the WOA while
the SA-based tracker is failed to determine the MPP.

The output power of the PV system with WOA, SA, and WOSA algo-
rithms under different PSC has been displayed in Figs. 18 and 19. From
these figures, the presented hybrid WOSA-based tracker caught the global
MPP with acceptable tracking efficiency for all cases of PSC. In most of
the cases, The SA-based tracker cannot catch the global MPP. As a general
conclusion, the convergence speed of WOSA-based tracker is better than that
with WOA. The results validate that the hybridization of the two algorithms
WOA and SA improves the system performance under all different cases of
study.
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Fig. 11 Convergence curve of the PV system for WOA, SA, and WOSA techniques under first
partial shading patterns

Fig. 12 Convergence curve of the PV systemwithWOA, SA, andWOSA techniques under second
partial shading patterns
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Fig. 13 Detailed simulation results for the performance of PV systemunder second shading pattern;
WOA, SA, and WOSA-based trackers

Fig. 14 Convergence curve and duty cycle versus iterations for WOA, SA, and WOSA techniques
under third partial shading patterns
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Fig. 15 Detailed simulation results for the performance of PV system under third shading pattern;
WOA, SA, and WOSA-based trackers

Fig. 16 Convergence curve and duty cycle versus iterations for WOA, SA, and WOSA techniques
under fourth partial shading patterns
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Fig. 17 Detailed simulation results for the performance of PV system under fourth shading pattern;
WOA, SA, and WOSA-based trackers
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Fig. 18 P–V curve and the output power of PV system forWOA, SA, andWOSA algorithms under
uniform patterns, first and second patterns
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Fig. 19 P–V curve and the output power of the PV system for WOA, SA, and WOSA algorithms
under third and fourth patterns
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7 Conclusion

In this chapter, a hybrid WOSA technique is introduced for improving the effi-
ciency of PV system under partially shading. The presented algorithm has been
applied to track the global MPP from the multiple local peaks in P–V curve. A
comprehensive evaluation of the presented hybrid tracker has been carried out using
MATLAB/Simulink package. The results of the hybrid WOSA algorithm have been
comparedwith the results ofWOAandSA techniques. The simulation results demon-
strate that the overall performance of the PV system with WOSA technique is better
than the other two techniques.Moreover, the performance of theWOSA is faster than
the other algorithms in terms of convergence speed. Future research should further
develop and confirm these algorithmswithmore cases of study and different configu-
rations of PV systems.Moreover, experimental validation of the application of recent
optimization techniques should be carried in the future work. Furthermore, in future
research, more research is needed to apply and test recent and hybrid optimization
techniques with intelligent control methods such as fuzzy logic and neural networks
for improving the performance of PV systems under partial shading conditions.
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Abstract The increased penetration of photovoltaics (PVs) within power sys-
tem on both islanded and grid-tied inverters encourages researchers to develop
several maximum power point tracking (MPPT) algorithms. The main tar-
get of this chapter is to enable PV systems to participate effectively in
power systems by harvesting the possible PV maximum power from a solar
panel. Two evolutionary algorithms for MPPT were developed and compared,
namely particle swarm optimization (PSO) algorithm and the recent cuckoo
search (CS). The proposed controllers employ DC/DC boost converter to har-
vest the maximum power available from the PV resource. System program-
ming and modeling is done using MATLAB/SIMULINK software. The obtained
results are compared with the mature perturb and observe (P&O) algorithm under
several operating conditions such as irradiance, temperature, and partial shading.
The developed controllers require only the PV voltage and current, which makes
them economically cost and attractive in the PV transient and steady-state operating
conditions.
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Acronyms

DERs Distributed energy resources
PVs Photovoltaics
MPP Maximum power point
GMPP Global MPP
MPPT Maximum power point tracking
EA Evolutionary algorithm
P&O Perturb & observe method
CS Cuckoo search
PSO Particle swarm optimization
PWM Pulse width modulation
DC/DC DC to DC conversion

Symbols

D Duty cycle
Dmin Minimum duty cycle
Dmax Maximum duty cycle
f s Switching frequency
L Inductance
Np Number of series modules of the solar array
N s Number of parallel models of the solar array
Vmp Solar array voltage at MPP
Imp Solar array current at MPP
Pmp Maximum power that could be drawn from the PV framework configuration
RL Equivalent load resistance
V oc Module open-circuit voltage
Idc Inductor current
Isc Module short-circuit current
ipv Instantaneous PV current
CD Current position of a particle duty cycle
v Particle velocity
Vmin Minimum allowed Voltage
V dc DC-link capacitor voltage
Cdc DC-link capacitor
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1 Introduction

Recently, cumulative demand of energy has pushed many governments all over the
world to consider modern distributed energy resources (DERs) as one of their pri-
orities to address energy production [1]. Photovoltaic (PV) energy is considered
a leading energy resource among DERs. It reaches about 320 GW from the world
energy production in 2016 [2]. PVs are not harmful to the environment and save crude
oil energy production considerably. In recent years, PVs are used in many applica-
tions such as electric transportation, water desalination systems, and road lighting [3,
4]. A considerable amount of research was done in [5] to upgrade PV performance in
terms of high efficiency in small-scale water pumping systems. Besides, it decreases
the overall greenhouse gas production whenever connected to an electric network
system. PVs come among the priority alternatives for islanded, rural, and remote
areas systems [6].

The energy yielded from the PVs is markedly influenced by the external weather
[7, 8]. Partial shading lends itself as a substantial weather condition to vary power-
voltage (P-V) characteristics of the PV frameworks [9, 10]. Thence, PVs showmulti-
ple power peaks if they confront multiple partial shading conditions. However, there
exists one global MPPT due to the bypass diode [11]. Normally, a DC/DC converter
is utilized to decrease the partial shading impacts and extract the MPPT of the PV
arrays [12, 13]; thence, several MPPT techniques have been reported in the litera-
ture. In [14], the incremental conductance method is conducted experimentally, in
which the system reaches the MPPT within 3 s. Conventional MPPT methods such
as incremental resistance, perturb and observe, hill climbing, neural network, and
fuzzy were reported in [11, 15–21].

Although conventional methods are used satisfactorily to solve MPPT issues,
they showed some limitations regarding partial shading, in which there exist multi-
ple peaks within the PV arrays P-V curve [20]. Alternatively, several evolutionary
algorithms (EA) have been considered to find global maximum power point (MPP)
for PV arrays. The utilized EA algorithms include: genetic algorithm [20, 22], parti-
cle swarm optimization (PSO) [23, 24], ant colony [25], mine blast optimization [26],
teaching-learning-based technique [26, 27], and gray wolf algorithm [21]. Although
the above EAs work satisfactorily regarding MPPT, there is still a need to develop
modern EAs. Recently, cuckoo search (CS) has been utilized in [28] to solve load fre-
quency issues, and it shows very satisfactorily results compared to genetic algorithm
and particle swarm optimization. This encourages the authors to develop a modern
EA based on CS algorithm to solve MPPT issues.

This chapter suggests a recent optimizer based on CS technique to solve MPPT
issues. Besides, another algorithm based on PSO is developed with an objective to
verify the effectiveness of both optimizers against different conditions. The obtained
results are compared to the well-known P&O method.
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2 System Description

The schematic diagram is shown in Fig. 1. Eachmodule is investigated by considering
Tata Power Solar Systems TP250MBZ as an example. Also, the module has 60 series
cells with 249 W theoretical maximum power. The framework comprises four PV
modules connected in series. The behavior of the PVmodule is expressively impinged
by, namely, temperature, irradiance, and partial shading conditions. In the subsequent
sections, each online optimizer will be trialed for different temperature, irradiance,
and partial shading conditions.

2.1 Impact of Module Irradiance

Each individual module is subjective to change the MPP by the received solar irradi-
ance as shown in Fig. 2, in which themodule Isc is highly affected by solar irradiance.
Consequently, the MPP varies significantly by solar irradiance variation.

2.2 Impact of Module Temperature

The array type, current-voltage (I-V), and P-V characteristics of each module are
given in Fig. 3. The module open-circuit voltage (V oc) is significantly invoked by

Fig. 1 Structure of the PV framework module
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Fig. 2 Properties of the PV module for 25 °C with different, a I-V curve, b P-V curve

Fig. 3 Properties of the PVmodule with different temperatures for irradiance of 1000W/m2, a I-V
curve, b P-V curve

temperature. Consequently, the MPP moves to the left and down with the increase
in module temperature with the changes in the PV module temperature.

2.3 Impact of Partial Sharing

The connection diagram of the PV framework is shown in Fig. 4. In addition to clouds
movements, the shadows movements of buildings cause partial shading problems.
This behavior sequentially results in multiple peaks in the I-V and P-V curves of
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Fig. 4 MATLAB/Simulink PV framework connection

PV arrays configuration. As shown in Fig. 5, two irradiance patterns are shown: (a)
The four modules have identical irradiance (1000 W/m2); (b) the PV modules have
isolations: 1000, 300, 600, and 500W/m2, respectively. In addition tomultiple peaks,
the global MPP (GMPP) moves to the left and down. An effective optimizer should
not be trapped in local MPP, in which the PV power may be less the GMPP. Thence,
tracking the GMPP is imperative action. In the following, each of the developed
online optimizers’ applicability will be checked to distinguish GMPP.

3 System Design

The power drawn the PV module is handled by the online developed optimizers to
obtain the maximum available power with the accessible irradiance.

3.1 Selection of the PV Array

The PV array is to be chosen according to maximum load requirements. The array
maximum power is calculated according to (1), in which Np and N s are the parallel
and series modules, respectively, Imp is whole PV framework configuration current
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Fig. 5 Properties of the PV curves with different irradiances

Table 1 Specifications of
one solar module

Item Value Unit

Voc 36.8 V

Isc 8.8 A

Vmp 30 V

Imp 8.3 A

Module peak power 249 W

N s 4 –

Np 1 –

at the MPP, and Vmp is the whole PV framework configuration voltage. The PV
specifications for one module are given in Table 1.

Pmp =
(
Np × Imp

) × (
Ns × Vmp

)

= (1× 8.3) × (4× 30) = 996 (1)

3.2 Design of DC-Link Capacitor

Normally, capacitors are designed to meet energy demands during transient times
such as rapid changes in irradiation and load. The next generic equation given in (2)
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is employed to design DC-link capacitor, which is connected in parallel with the PV
array as shown in Fig. 1.

1

2
Cdc

[
V 2
dc − V 2

min

]
= Pmp × �t (2)

where V dc is the DC-link or PV voltage, Vmin is the minimum PV allowed voltage,
and �t is the transient time. The switching frequency (f s) of the system is 50 kHz.
Using V dc to equal the PV array framework voltage at MPP (120 V), Vmin equals
half the PV array voltage at MPP (60 V), and �t equals three times the switching
period results in Cdc of about 10 μF.

3.3 Design of Output Filter Capacitor

For DC/DC boost converters, the output voltage V o is regulated at specific value. For
design procedures, this value is assumed twice the PV array framework voltage at
MPP (240 V). The filter output capacitor (Co) provides the load energy during fall of
irradiance or heavy partial shading. Thence, a time of 1 ms is assumed for �t. Using
the same generic equation given in (2) with Vmin of 120 V and Pmp of 996 W results
in a value for Co of at least 0.23 mF [5].

3.4 Design of Equivalent Load Resistance

Neglecting PV and boost converter losses, the capacity of the output power is equiv-
alent to the input power (996W), which results in equivalent load resistance of about
58� according to (3).

RL = V 2
o

Pmp
= 2402

996
= 58� (3)

3.5 Design of Boost Converter Inductance

To design the boost converter inductance, the maximum and minimum duty cycles
are determined first as in (4) and (5), respectively.

Dmin = Vo − Vdc,max
Vo

= 240− 120

240
= 0.5 (4)

Dmin = Vo − Vdc,min
Vo

= 240− 60

240
= 0.75 (5)
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To guarantee the PV array current in the continuous conduction mode, the min-
imum duty cycle and the V dc,max are utilized [29]. Thence, the inductance value is
given in (6).

L = Vmp × Dmin
�Idc × fs

= 120× 0.5

1× 50, 000
= 1.2mH (6)

4 Problem Description

The study in this chapter brings together two recent online EAs optimizers and the
P&O method to harvest and track the MPP from a solar array. The duty cycle of
the DC/DC boost converter is updated through the operation of the online developed
optimizers.

4.1 Overview of Particle Swarm Optimization

PSOwasdeveloped in an analogy to animal swarmsbehavior tofind aglobal objective
function solution, in which each animal is considered a particle [4, 30]. In this
optimizer, the velocity of the swarm is utilized to adjust the current position (CD) of
a particle as in (7) and (8), respectively, in which ωo is the inertia weight, r1, r2, c1,
and c2 are decided randomly between 0 and 1, Gbest is a global best for the solution,
and Pbest is called the personal best.

vk+1
i = ωov

k
i + c1r1

(
Gbest − CDk

i

) + c2r2
(
Pbest − CDk

i

)
(7)

CDk+1
i = CDk

i + vk+1
i (8)

The online operation of the PSO is depicted in Fig. 6, in which the duty cycle
(D) is initialized randomly and stored in a predefined matrix size. The online PSO
optimizer sends the estimated global best duty cycle (Gbest) to the PWM box. The
optimizer operates as long as the load needs power.

4.2 Overview of Online Cuckoo Search Optimizer

Cuckoo search was inspired in a previously reported study by X. Yang in 2010 to
find an optimization function solution by imitating cuckoo reproduction parasitism
[28, 31]. CS employs Levy flights to update duty cycles values as in (9) and (10) in
terms of the gamma-function(γ ), respectively [32, 33], with all unknown parameters’
values which are given in the appendices.
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Fig. 6 Flowchart of online PSO-based optimizer
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δ =
⎡

⎣
γ (1+ β) × sin π ×

(
β

2

)

γ
(
1+β

2

)
× β × 2

β−1
2

⎤

⎦

1
β

(9)

CDk+1
i = CDk

i + α × Gbest × |u|
|v| 1

β

(10)

The functions u and v are uniformly distributed matrices with a zero mean value
and standard deviations of 1 and δ, respectively. The online operation of the CS
optimizer is depicted in Fig. 7, in which the duty cycle (D) is initialized randomly
and stored in a predefined matrix size also. The online CS optimizer excludes the
worst solutions and exchanges them by new nests. Each is considered a solution.
Thence, the CS sends the estimated global best duty cycle to the PWM box. Also,
the optimizer operates as long as the load needs power.

4.3 Overview of Perturb and Observe Method

The operation of the P&O method is implemented in Fig. 8 [34, 35]. The basic
principle of this method depends on the PV power signal. The accuracy of this
method depends on the selection of the duty cycle perturbation (C), which will be
added or subtracted to update the DC/DC converter switch duty cycle.

5 Simulated Results

In order to investigate the applicability and efficacy of the developed online optimiz-
ers, a MATLAB/Simulink 2015a model was implemented. The online optimizers
are called instantaneously within the execution procedures of the DC/DC boost con-
verter to assess the required duty cycle. Several irradiance and temperature patterns
are considered to trial the efficacy of the online optimizers to find a GMPP.

5.1 Identical Temperature and Irradiance

In this scenario, the four modules have the same temperature (25 °C) and irradiance
(1000 W/m2). Figures 9 and 10 show the PV array performances. It is clear that
the developed online EA algorithms give satisfactory results compared with P&O
method. The performance under P&O method suffers from large ripples in the PV
voltage and current profiles. This behavior emerges from the P&Onature, as it always
oscillates around the MPP by a small increment. At the end of 1 s simulation, the
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Fig. 7 Flowchart of online CS-based optimizer
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Fig. 8 Flowchart of P&O method

developed algorithms record 96.75, 97.15, and 83.76% accuracy for PSO, CS, and
P&O, respectively, to track the MPP. Thus, the MPPT problem was solved.

5.2 Impact of Irradiance

In order to investigate the stability performance of the developed algorithms against
transient conditions, one of the four modules irradiance is changed suddenly to
500W/m2. Such situation could happen with the movement of clouds. Consequently,
the MPP moves from the solid curve to the dashed one as shown in Fig. 11, which
corresponds to 996 and741Wfor both curves, respectively. The systemperformances
are given in Figs. 12 and 13. It is clear that the P&Omethod suffers from large ripples
in the duty cycle performance due to irradiance sudden changes. The online EAs
gave satisfactory results with PSO records the closest MPP to the standard value.
Thence, the efficacy of the developed online optimizers to solve the MPPT issues
was affirmed.
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Fig. 9 PV Performance
under uniform irradiance,
a duty cycle, b PV power

(a)

(b) 

5.3 Impact of Temperature

In this scenario, one arbitrary PV module temperature is increased to 45 °C at 0.6 s.
The corresponding PV curves are shown in Fig. 14. The MPP was slightly moved
left and decreased to 976 W. Such behavior could happen if insolation and shadow
scattered in an uneven manner among individual modules due to building. Besides,
it occurs if one module receives negative current for any unusual reason. The PV
framework performances are given in Fig. 15. It is clear that the developed online
EAs gave very satisfactorily results. They record around 97% efficiency for both
algorithms. Thus, the problem of solving MPPT was confirmed.

5.4 Impact of Partial Shading

In this scenario, the performance of the developed online optimizers will be checked
against several local MPPT options. Because there are several local MPPs, the opti-
mizer has to look for GMPP to track. The PV modules have the same operating
temperature (25 °C). Arbitrarily, the operating conditions with PV irradiance pat-
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Fig. 10 PV current and
voltage under uniform
irradiance, a PV voltage,
b PV current, c maximized
current image

(a)

(b)

(c)

terns of Fig. 5 are chosen with GMPP of 407 W. Some of the system performances
are given in Fig. 16a. As expected, the P&O method fails to find a global MPP to
track. It was entrapped and oscillates around the first local MPP from the left on the
P-V curve as shown in Fig. 16b. Besides, the CS outperforms the PSO in getting
higher efficiency. It records 99.31% compared to 99.28% for PSO.

Another irradiance pattern was arbitrary chosen as 800, 600, 500, and 1000,
respectively, which corresponds to a PV behavior as shown in Fig. 17. Both CS
and PSO algorithms showed high efficiency of about 99.4 at steady state. Still, the
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Fig. 11 PV curves for scenario 2

Fig. 12 PV performance for
scenario 2, a duty cycle,
b PV power

(a)

(b)
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(a)

(b)

Fig. 13 PV current and voltage performance for scenario 2, a PV voltage, b PV current

Fig. 14 PV curves for scenario 3
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Fig. 15 PV performances
for scenario 3, a duty cycle,
b PV power

(a)

(b)

P&O was trapped near the second peak. It is obvious that the developed online
EA algorithms show better performance. CS algorithm shows faster performance in
finding the GMPP.

6 Discussions

PSO and CS showed satisfactory performance under identical temperature and irra-
diance conditions with about 0.18 and 0.22 s settling times for each correspondingly
as in Fig. 9b. Under partial shading, there is only one GMPP and several local MPPs,
depending on the number ofmodules. CS algorithm demonstrated a good exploration
performance to catch the GMMP; however, both algorithms showed exploitation
behavior at steady state to hold operation around the GMPP. Besides, both algo-
rithms illustrated satisfactory behavior with respect to transient behavior without
oscillation at steady-state long-term operating conditions. However, in a clear man-
ner, P&O could not track the GMMP under partial shading conditions. Thus, the
ability of the developed PSO and CS algorithms was proved in tracking a global
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Fig. 16 PV performances
under the first partial shading
pattern conditions, a PV
power, b local and global
MPP

(a)

(b)

maximum power point under partial shading with different irradiance patterns. From
the above reported simulation results, the following notices can be drawn:

• All algorithms show better performance to solve MPPT problem as in Figs. 9 and
10, respectively.

• CS outperforms the other algorisms to find a GMPP under partial conditions as in
Fig. 16.

• PSOoutperforms the other algorithms under transient operations to find theGMPP.
This comes back to the nature of the PSO algorithm as in Figs. 13 and 15, respec-
tively, which has a high exploitation property as reported by the second author in
[4].

• P&O method fails to find a global MPPT, as it is always trapped and oscillates
around the first local MPPT.
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Fig. 17 PV performances
under the second partial
shading pattern conditions,
a PV power, b local and
global MPP

(a) 

(b)

7 Conclusions

In this chapter, two online EAs are trialed and compared to solve MPPT problem
under different operating conditions. Both algorithms show high applicability to
remedy partial shading problem and find a global maximum power point among
several local power points. Based on the simulated results, the following conclusions
can be drawn: (1) The PSO outperforms CS to remedy transient conditions. (2) CS
outperforms PSO to find a global maximum power point with higher efficiency. The
results reveal the superiority of both algorithms to solve MPPT problem. For future
works, both algorithms can be combined together to get the benefits of the PSO
exploitation characteristics and CS exploration property.
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Appendix

1. PSO parameters:ω0 = 0.4, c1= 1.2, c2= 2, r1 and r2 are randomly chosen during
each execution; size of duty cycle matrix is 4 by 1

2. CS parameters: α = 0.8, β = 1.5, size of duty cycle matrix is 4 by 1
3. P&O: the P&O increment in duty cycle (C) is 0.001.
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A New Hybrid Moth Flame
Optimizer-Perturb and Observe Method
for Maximum Power Point Tracking
in Photovoltaic Energy System

Saber Arabi Nowdeh, Mohammad Jafar Hadidian Moghaddam,
Shohreh Nasri, Almoataz Y. Abdelaziz, Mahmood Ghanbari and Iraj Faraji

Abstract In this chapter, a new hybrid moth flame optimizer-perturb and observe
method that is called HMFOPO is used to solve the MPPT problem for PV energy
system in order to provide an optimal response due to achieving the maximum PV
module power. In the proposed scheme, by using the MFO optimization method,
the photovoltaic curve is investigated and then the P&O method is implemented by
starting from the position of the best moth of the MFO algorithm. Therefore, a com-
bination of MFO and P&O methods joins the derived intelligence from MFO with
the fast convergence of P&O to form a proper method with high speed, accuracy, and
efficiency due to solving MPPT problem. By using the HMFOPO method, search
variables are considered as voltage and the objective function including the power
of the PV system is optimized by evaluating the power-voltage curve that should be
sampled online. In this study, by considering the conditions of rapid changes and
PSC, the efficiency of the PV module is investigated. There are also different sce-
narios to verify the performance of the proposed method under standard situations,
rapid change conditions, and partial shade exploitation. The capability of HMFOPO
in different scenarios such as standard condition and various patterns of partial shad-
ing from different perspectives such as the efficiency and convergence speed are
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investigated, and the results are compared with the obtained results from P&O and
MFOmethods. The simulation results show that the proposed hybridmethod benefits
higher speed and convergence efficiency in solving the MPPT problem and reaching
the GMPP and extracts more power from the PV system.

Keywords Maximum power point tracking · Photovoltaic energy system · Partial
shading · Hybrid moth flame optimizer-perturb and observe

1 Introduction

In comparison with traditional non-renewable sources like fossil fuels, the renewable
energy source (RES) technologies such as photovoltaic (PV) systems are sophisti-
cated, inexpensive, and widespread. Some applications of PVs include water pump-
ing, power supply of residential premises, battery charging, and to name but a few.
Employing semiconductors in PV arrays, solar energy is easily converted to elec-
tricity. Thanks to the considerable benefits of PV systems from economic and envi-
ronmental points of view, the demand for PV systems is exponentially growing.
Nonetheless, the application of PV systems has encountered limitations due to the
two major reasons: the installation cost is high and the efficiency is low in case of
changes in the weather conditions. Consequently, an interesting approach, named
maximum power point tracking (MPPT), has been proposed and widely used to
efficiently use a given PV system [1, 2]. Yet, since PVs suffer from low-efficiency
problems, for which a solution must be provided. The MPPT method has to be uti-
lized to increase the efficiency of PVs in different weather condition. In fact, tracking
the maximum power point ensures the efficiency improvement of PV systems. To
this end, a controller is used in PV systems to adjust the duty cycle of the load.
Moreover, some factors impact the operation of PVs and prevent the system to oper-
ate at the maximum power point, among which are the changes in solar radiation,
temperature, and load size. Additionally, when a PV system is under partial shading
conditions (PSC), it is difficult or impossible to operate at the MPP. The changes in
solar radiation affect the current greater than the voltage such that the reduction of
radiation results in current reduction, and finally, the output power is decreased [3].
Furthermore, the temperature has an adverse effect on the voltage of PV system such
that when the ambient temperature increases the voltage is decreased, which finally
leads to output power reduction. Under partial shading conditions, the output power
curve of PV arrays witnesses several maxima. Hence, a novel algorithm should be
introduced to ensure the system is operating on its maximum power point even when
the conditions change [3, 4].

A significant amount of research has been conducted by scholars to improve the
operation of PV systems. For instance, introducing novel techniques and algorithms
to reach the MPP is one of these approaches. To this end, a great number of literature
have focused on such methods. Two commonly used methods for MPPT include
perturbation and observation (P&O) [5] and hill-climbing (H&C) [6] because a fewer
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number of sensors are needed in these techniques, as a result the implementation and
operation of such methods is easy and simple. The fundamental rule of P&O and
H&C is to produce perturbation on the voltage signal and observe the output power.
If the output power is increased, the perturbation is maintained in the same direction;
otherwise the next perturbation is reversed. Regarding the point that theH&Cmethod
also makes an effort to regulate the PV voltage to track the maximum voltage point,
the fundamental rule ofH&Calgorithm is identical to that of P&Omethod. Themajor
disadvantage of these twomethods is that the algorithm is subjected to tracking errors
if the operational point changes fast and also the algorithm is not capable to track
the MPP. In [7], the incremental conductance (IncCond) algorithm is presented to
track the maximum power point of a PV system. This algorithmmakes a comparison
between the incremental and momentary conductance of PV cells and supplies the
load with PV’s output energy. The fundamental rule of this approach is the zero-
derivative of power per voltage or current. The main demerit of IncCond method
is that it needs control circuitry. Using the ripple correlation control (RCC) method
[8] along with a convertor results in noticeable ripples in the employed control
strategy when trying to control the MPPT. When solar radiation is high, it provides
a satisfactory performance. However, under low radiation level, the efficiency of
tracking process shows a significant decrease. Short-circuit current (SSC) [9] and
open-circuit voltage (OCV) [10] are used to determine the current and voltage of the
maximum power point. To this end, the load of the PV array is disconnected from the
system. Therefore, since the load had to be removed periodically these methods are
not considered as appropriate approaches to find the MPP, even though they are cost-
effective and can be easily implemented. Notwithstanding this, due to the facility of
use, SSC and OCV methods may be utilized in a hybrid approach.

Artificial intelligence (AI) methods [11] as substitute techniques for traditional
methods are used in many different engineering areas to solve convoluted problems.
To use artificial neural networks (ANNs) for the MPP problem, it is essential to
determine the weights (Wi) of synapses regarding the correlation among the inputs
and outputs of the PV system. As a result, the PV cell or array should be investigated
for a roughly long period of time to provide a specific pattern between the inputs
and outputs of the ANN. However, once the ANN’s structure is determined and it is
trained in a cumbersome manner, it would be easy to accurately reach the MPPT and
not much effort is required with respect to the PV variables. Even so, carrying out
a frequent training process needs new set of data. This is somehow time-consuming
and quite a significant amount of data sets must be provided for training the ANN.
Another method that is widely used for MPPT is fuzzy logic (FL), which is mostly
employed for partial shading conditions. Although ANN and FC provide satisfactory
results, they suffer from the complexity and burdensome of computations needed to
implement thesemethods [12]. During the past years, some new researches have been
carried out in the realm of solving theMPPTproblem in the PV systems. Besides that,
the effects of PSCon theMPPTproblemwere investigated. Itwas concluded that it is a
challenging task to accurately track themaximumpower point using the conventional
techniques under PSCs. So somenovelMPPTmethods and algorithms,most ofwhich
inspired by the nature are applied to solve the MPPT problem. Two most common
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methods of this category to name are particle swarm optimization (PSO) method
[13] and genetic algorithm (GA) [14]. These two optimization approaches are easy
to implement using a cost-effective digital controller. Additionally, since the global
peak power point is successfullymaintained even under partial shading, PSO andGA
are promising methods in this regard. Recently, many studies have been conducted
onMPPT problem solution, but there is still a need for powerful methods in this area
to achieve high efficiency of MPP tracking.

The major objective of this chapter is to access the global maximum power point
(GMPP) of the PV system through improving the tracking efficiency and reducing
or even eliminating the output power oscillations of the PV array under PSCs. In
recent years, a novel nature-inspired meta-heuristic algorithm known as moth-flame
optimization (MFO) algorithm was introduced by Mirjalili [15]. MFO imitates the
swirling (spiral)movement ofmoths surrounding a candlelight.Basedon the obtained
results and rapid convergence feature of the MFO algorithm compared with similar
methods, it is proved thatMFOprovides high optimization accuracy and required low
computational burden [16–19]. Moreover, a fewer number of variables and operators
are required in MFO compared to similar evolutionary techniques and this has led
to the widespread application of this method for MTTP problems. In this chapter,
MFO is combined with P&O and a novel hybrid method known as HMFOPO is
implemented to solve the optimization problems under PSCs and find the MPP for
the PV system.

The chapter is organized as follows. The model of PV system is described in
Sect. 2. Section 3 illustrates various PV system patterns both under standard condi-
tions and partial shading conditions. Furthermore, the proposed HMFOPO method
for MPPT is introduced and explained in Sect. 4. Finally, the simulation results and
conclusions are presented in Sects. 5 and 6, respectively.

2 Modeling of PV Energy System

Various models have been adopted in the literature for PV modules up to this date.
Single-diode model [12–14] is one of the rampant and simple models in this regard,
where a paralleled current source, a diode, and a resistor are employed. Figure 1
shows the equivalent circuit of a solar cell. Single-diode model was adopted in this
study to simulate the considered PV system because the proposed model is efficient
and compromises between simplicity and accuracy.

The output current of the PV cell is expressed as follows [12–14]:

IPV = IPH − ID − VPV + Rs IPV
Rsh

= IPH − IPH

[
exp

(
VPV + Rs IPV

Vta

)
− 1

]
− VPV + Rs IPV

Rsh
(1)



A New Hybrid Moth Flame Optimizer-Perturb and Observe Method … 405

PHI DI SHI

PVI
SR

ShR PVV

+

−

Fig. 1 Single-diode model of a PV cell
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Fig. 2 P-V characteristics curve for a PV cell

where Vt = kT
q . Two remaining unknown parameters, i.e. Rs and Rp in Eq. (1), are

obtained by matching the maximum calculated power from the model with the peak
power of MPP (maximum power point) datasheet [12–14].

The P-V and I-V characteristic curves for a given PV system, both nonlinear, are
illustrated in Figs. 2 and 3, respectively. When there is no shading conditions and
the PV are exposed to standard test condition (radiation of 1 kW/m2 and temperature
of 25 °C), only one peak point is seen in the P-V curve. Nevertheless, several peak
points are available on the curve under PSCs.
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Fig. 3 I-V characteristics curve for a PV cell

3 PV System in Partial Shading Condition

The ambient temperature and solar radiation intensity are twomajor factors affecting
the output voltage and current of a PV system. The former parameter has a sensible
impact on the voltage, while the latter impacts the current. In fact, the output voltage
and current determine themaximum power point [12–14].More radiation in the solar
system generates more power and vice versa. In accordance with Figs. 2 and 3, i.e.
the P-V and I-V curves, it is clear that there is merely one optimal point where the
maximum amount of power is provided to the PV system. In large-scale PV arrays,
there are series-parallel structures of PV modules, each of which consist a string of
PV cells in series. Due to various parameters like shading, clouds, and weak solar
radiation, a number of modules show poor performance. The phenomenon where an
array lacks enough solar radiation or is somehow deprived of solar radiation is known
as partial shading condition (PSC) [12–14]. The largest point among these peak points
is known as the global maximum power points (GMPP). The other maxima are called
local maximum power points (LMPP). The amplitude and position of LMPPs are
dependent on the structure of PV modules and the shading patterns [13].

It is incumbent to utilize intelligent optimization techniques to reach the GMPP
under PSCs. The reason behind this fact is that the conventional MPPT methods
cannot provide the convergence to the GMPP. Table 1 lists the required technical
variables and parameters used in the PV array of this survey.

In this study, three patterns for PV modules configurations have been considered
as data of Table 2 and Fig. 4. In pattern 1, the solar radiation of each cell is equal to
1 kW/m2 named standard test condition (STC) and also in patterns 2 and 3, different
partial shading conditions are considered (Fig. 5).
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Table 1 Parameters of the single PV cell (BP SX 80) [20]

Parameter Value

Maximum power 80 W

Open-circuit rated voltage (Vocn) 22.1 V

The voltage of maximum power point (Vmp) 17.6 V

Short-circuit rated current (Iscn) 4.8 A

Current of maximum power point (Imp) 4.6 A

Temperature coefficient −0.080 V/°C

Table 2 solar data of PV
modules configuration in
different pattern [20]

Pattern Solar Irradiance (kW/m2)

SP1 1 1 1 1

SP2 1 0.5 1 1

SP3 1 0.7 0.1 1
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Fig. 4 PV modules configuration in different pattern, a pattern 1 (STC), b pattern 2 and pattern 3
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Fig. 5 Characteristics curve of PV modules under different patterns, a I-V curve and b P-V curve

4 Proposed Method

The understudy PV system, shown in Fig. 6, is comprised of several PV modules,
a DC/DC boost converter, and a load. After the calculation of voltage and current
and multiplying them, the output power of the PV system is provided to apply to
the MPPT algorithm. Then, duty cycle d is established using the algorithm and the
DC/DC boost converter is enabled. The value of d as a decision variable in the
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Fig. 6 A general block diagram of the MPPT algorithm

algorithm determines the PV output power known as the fitness value [12–14, 20].
One inference from this fact is that the determined optimal d by the MPPT algorithm
gives the maximum extractable power from the PV system.

In this study, P&O, MFO, and the proposed HMFOPO method are utilized to
solve the MPPT problem.

4.1 Moth-Flame Optimizer

Moths employ amechanism named transverse orientation for routing. In thismethod,
a moth flies by maintaining a constant angle with respect to the Moon, and this is a
very efficientmechanism for flying in a direct path for long distances.MFOalgorithm
is an inspiration of this behavior. In the proposed algorithm, it is assumed that the
moths are candidate solutions and the moths’ positions are variables of the problem.
Therefore, by changing their position vectors, moths can fly in 1D to 3D or even
higher dimension spaces [15, 18, 19].

In MFO algorithm, a set of moths are represented in a matrix form as follows [15,
18, 19].

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

m1,1 m1,2 · · · · · · m1,d

m2,1 m2,2 · · · · · · m2,d
...

...
...

...
...

...
...

...
...

...

mn,1 mn,1 · · · · · · mn,d

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

where n is the number of moths, and d denotes the number of variables.
For all moths, the values of fitness function are taken into account as [15, 18, 19]:
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OM =

⎡
⎢⎢⎢⎢⎢⎢⎣

OM1

OM2
...
...

OMn

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

A matrix similar to moth matrix is considered for flames [15, 18, 19]:

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

F1,1 F1,2 · · · · · · F1,d

F2,1 F2,2 · · · · · · F2,d
...

...
...

...
...

...
...

...
...

...

Fn,1 mn,1 · · · · · · Fn,d

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

For all flames, the values of fitness function are assumed as [15, 18, 19]:

OF =

⎡
⎢⎢⎢⎢⎢⎢⎣

OF1
OF2

...

...

OFn

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

Moths and flames both are solutions of the problem. The difference between them
is the way they are updated at each iteration. Moths are the real search factors, which
move around the search space. However, flames are the best positions of moths
obtained so far. MFO algorithm approximates the global optimum of optimization
problems, which is defined as follows [15, 18, 19].

MFO = (I, P, T ) (6)

In the above equation, I is a function generated by an initial population of moths
and their corresponding fitness values. Function P, as the main function, moves the
moths in the search space. Function T provides the correct value if the termination
criteria is met; otherwise, it brings the incorrect value [15]. I, P, and T define the
general framework of the MFO algorithm. Function I generates the initial solutions
and calculates the values of fitness function. Any random distribution can be used
for this function. After initialization, function P is repeatedly executed until function
T brings the correct value. Function P is the main function and moves the moths in
the search space. To mathematically model this behavior, the position of each moth
with respect to the flame is updated using the following equation [15, 18, 19].
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M = S
(
Mi , Fj

)
(7)

In the above equation, Mi is the i-th moth, Fi represents the j-th flame, and S is
the spiral function.

A spiral-logarithmic algorithm is utilized in this algorithm as the main updating
mechanism. However, any type of spiral function subject to the following constraints
can be employed for this objective:

• The start point of the spiral must begin from the moth.
• The end point of the spiral must be the moth’s position.
• The amplitude oscillation of the spiral must not exceed the search space.

Considering these three points, a spiral-logarithmic function for the mechanism
of MFO algorithm is defined as follows [15].

S(Mi , Fj ) = Di · ebt · cos(2π t) + Fj (8)

In the above equation, Di is the distance of the i-th moth from the j-th flame, b is
a constant to define the spiral-logarithmic shape, and t denotes a random number in
the range of [−1, 1].

Di is calculated as [15]:

Di =
∣∣Fj − Mi

∣∣ (9)

4.2 P&O Method

TheP&Omethod is based on the comparison of the output voltage and power changes
of the PV system. Thereby, first, the current and voltage of the modules should be
sampled to calculate the voltage and power variations. In this method, the parameter
X represents the reference signal. If X is the voltage (X = V ), the task is to move this
parameter’s value to VMPP. Consequently, the instantaneous voltage moves toward
VMPP so as to the output power matches the MPP. To this end, a constant but small
perturbation is imposed to the PV cell’s voltage. To vary the operating point, a
sequence of perturbations is imposed by C = �V, when a given perturbation is
applied, the changes of power in the output (�P) are measured and if it has a positive
value the power point is moving toward the MPP; otherwise, it moves away from the
MPP. For the former and latter cases, positive and negative voltage perturbations are
imposed, respectively. Once the MPP is reached, the procedure will be terminated
[5].
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4.3 HMFOPO Method

In the proposed method, by using the MFO optimization method, the photovoltaic
curve is investigated and then the P&O method is implemented by starting from the
position of the best moth of theMFO algorithm. Therefore, the combination of MFO
and P&Omethods joins the derived intelligence fromMFOwith the fast convergence
of P&O to form a proper method with high speed, accuracy, and efficiency due
to solving MPPT problem. By using the HMFOPO method, search variables are
considered as voltage and the objective function including the power of the PV
system is optimized by evaluating the P-V curve that should be sampled online.

The main objective of MFO algorithm in theMPPT controller is to find an operat-
ing point corresponding to the maximum output power from the PV module. Hence,
the objective function is in the form of maximizing the PV power, where the MFO
algorithm must move along the maximization of the objective function. In the pro-
posed approach, the optimizationvariable is the voltageofPV, and the control variable
is the duty cycle of the DC/DC converter. The optimization problem is defined as
follows:

{
max f (Vpv, Ipv) = max{Ppv}
0 < Vpv < Voc

(10)

In other words, the terminal voltage should be constrained between the open-
circuit voltage and zero voltage values, and the converter switching must be per-
formed such that the maximum power is extracted in the output. Identical to all
population-based optimization algorithms, first, a number of initial operating points
should be defined as the initial population to start the search process in the default
range. It is worth mentioning that the optimization procedure and its results are inde-
pendent of the initial population. Therefore, these initial values are random values
where they can adopt any value.

Another critical factor in optimization programs is the number of search particles,
in short npop, which is selected between 6 and 10 by trial and error. A fewer number
of particles results in non-convergence of the algorithm to the global MPP; on the
other hand, a more number of populations decelerates the algorithm and wastes time.
After assessing the initial population and when the fitness function corresponding to
each of the particles is specified, new particles should be produced according to the
older ones. Each optimization algorithm has its own exclusive updating method.

The following steps are taken for implementation of MFO method:
Step (1) The number of moths is selected equal to 8, and popmatrix is defined as

a linear distribution between the minimum and maximum values as the initial values
for the duty cycle of the converter.

To determine the fitness of moths, the amount of generated power by the PV
system is measured at each of those values. The produced power is calculated by
multiplying V pv and Ipv, and the corresponding fitness vector (the power value of the
PV array) is defined.
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Step (2) With regard to the value of the produced power corresponding to each
of duty cycle values, pop and fitness vectors are sorted in an ascending manner:

Fitness-_sort = sort(fitness): The sorted fitness vector from minimum to maximum.
pop_sort = pop(Index: fitness-_sort): The population sorted vector corresponding
to the sorted fitness.

Step (3) If it is the algorithm’s first iteration, the following step is implemented:
In the first iteration, dist vector

(
Di =

∣∣Fj − Mi

∣∣) is defined and calculated as the
distance of a moth from sorted moths: dist = |pop_sort − pop|

Using the dist vector and sorted vector pop_sort, new population is established:

popnew = r1 × dist × ek−m + r2 × pop_sort

In the above equation, r1 and r2 are two random numbers. Also, k is a random
number in the range [−1, 1], and m is the mitigating factor of the algorithm. With
the increase in the number of algorithm iterations, m decreases the first term and
increases the second term (pop_sort).

Step (4) There are three decision vectors from iterations two or higher:

• New population vector, pop2;
• Population vector in the previous iteration, pop_old;
• Vector pop_sort.

The new vector is formed using these three vectors. For this end, all three vectors
are put in a vector and then sorted based on the fitness of each moth. Then, one-third
of the population is taken and the rest is eliminated. Thereby, the moths with the
higher fitness values are maintained and those with less fitness values are removed
from the competition.

Consequently, in the algorithm output, the best duty cycle of the converter is
determined optimally corresponding to the maximum PV power. Next, the optimal
duty cycle (doptimal) of the initial value of the duty cycle is applied through P&O
method.

The implementation steps of P&O method for solving the MPPT problem are
summarized in the below.

• The P&O method starts with the determined doptimal in the MFO method as the
initial value of the converter’s duty cycle.

• After the modification of the converter’s duty cycle, a disturbance is applied to
the operating voltage of PV. If the output power of the PV module is increased,
the duty cycle is also varied along with it; otherwise, it is varied in the inverse
direction.

• The previous step is repeated until the GMPP is reached.
• At each 0.1 s, the output power of the PV module is measured and if the power
change in the output power samples is greater than 1% of the rated output power
of the PV, algorithm is carried out again from the start point.

The flowchart of the proposed method is illustrated in Fig. 7.
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5 Simulation Results and Discussion

The obtained simulation results for the MPPT of the under-study PV system, both
for standard and various PSCs, are described using the HMFOPO method. To prove
the superiority and efficiency of the HMFOPO method, other competent methods
like P&O and MFO are also tested. The comparison between these three methods
is carried out in terms of the convergence speed, extracted output power, and the
GMPP tracking efficiency. These tests were performed under standard and partial
shading conditions. The simulation time was assumed 20 s, where 10 s is allotted to
the standard condition and other 10 s is assigned to the partial shading condition. The
simulations were carried out in MATLAB/SIMULINK software. Also the values of
components of the DC/DC converter are presented in Table 3.
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Table 3 Values of
components of the DC/DC
converter [21]

Components Values

Load resistor (RL) 1 �

Inductor (L) 300 µH

Input capacitor (Cin) 100 µF

Output capacitor (Cout) 990 µF

MOSFEt’s switching frequency (fs) 100 kHz

5.1 Simulation Results Under Different Patterns

The simulation results under standard (pattern 1) and shading (patterns 2 and 3)
conditions are given in Figs. 8 and 9. The initial duty cycle for the P&O method
is assumed 0.55 s. The P&O method is trapped in the local maxima and fails to
extract the maximum power from the PV system under both standard and shading
conditions. On the other hand, the MFO algorithm succeeds in reaching the MPP
although with a minor error with respect to the GMPP.

According to the obtained results from the proposed HMFOPO method, it is
observed that in solving the problem, in addition to extracting higher power, it reaches
the GMPP with a higher convergence speed. Therefore, one can infer that the com-
bination of P&O andMFOmethods, known as HMFOPO hybrid method, provides a
method with higher speed and convergence accuracy in solving the MPPT problem
to each the GMPP.

5.2 Comparison of Results

P&O, MFO, and HMFOPO methods were compared in terms of the convergence
speed, maximum extracted power, and the GMPP tracking efficiency, and the results
are reported in Tables 4, 5 and 6. The efficiency is calculated as the ratio of the
photovoltaic output power to its peak power. The obtained results prove that the con-
vergence speed of the proposedHMFOPOalgorithm to the globalMPP is remarkably
high in comparison with P&O and MFO methods. Therefore, the required time to
reach the GMPP is the least in the proposed method. Also, these results show the
superiority of the HMFOPO method in terms of GMPP tracking efficiency in com-
parison with the P&O and MFO methods. The maximum power values for patterns
1, 2, and 3 are 160 W, 120.1, and 92.73 W, respectively. According to Table 4, the
P&O method extracted 155.50, 96.57, and 90.62 W output powers for patterns 1, 2,
and 3, respectively. The maximum power for the pattern 1 is obtained as 157.35 W
by MFO, and the HMFOPO algorithm is converged to 159.72 W. In the pattern 2, it
is converged to 118.98 W using MFO and in HMFOPO is converged to 119.47 W.
In the pattern 3, it is converged from 90.75 W using MFO and in HMFOPO is
converged from 91.95 W. The results show that the HMFOPO is extracted more
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Fig. 8 Tracking curve of
MPP for different methods
under patterns 1–2
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Fig. 9 Tracking curve of
MPP for different methods
under patterns 1–3
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Table 4 Performance comparison of MPPT methods in terms of maximum extracted power

MPPT algorithm Pattern 1 Pattern 2 Pattern 3

Maximum power 160 120.1 92.73

P&O 155.50 96.57 90.62

MFO 157.35 118.98 90.75

HMFOPO 159.72 119.47 91.95

Table 5 Performance comparison of MPPT methods in terms of tracking efficiency

PMPPT Algorithm Pattern 1 Pattern 2 Pattern 3

P&O 97.18 80.40 97.72

MFO 98.34 99.06 97.86

HMFOPO 99.82 99.47 99.15

Table 6 Performance comparison of MPPT methods in terms of convergence speed

MPPT Algorithm Pattern 1 Pattern 2 Pattern 3

P&O 5.22 5.28 4.98

MFO 5.79 4.77 4.66

HMFOPO 1.67 2.30 1.81

power than P&O and MFO. Based on Tables 5 and 6, the HMFOPO method ben-
efits higher convergence speed and convergence efficiency. The tracking efficiency
of P&O, MFO, and HMFOPO methods for pattern 1 is 97.18, 98.34, and 99.82%,
respectively. The values for pattern 2 are 80.40, 99.06, and 99.47%, respectively.
Additionally, these values for pattern 3 are 97.72, 97.86, and 99.15%, respectively,
where obtained results prove the superiority of the proposed method in solving the
MPPT problem with high convergence speed.

6 Conclusion

To solve the maximum power point tracking problem for a photovoltaic system
under both standard and partial shading conditions, this chapter introduced a novel
hybrid method, known as HMFOPO. The proposed method is superior to P&O and
MFO methods in terms of convergence speed, the GMPP tracking efficiency, and
extraction of power. HMFOPO reaches the GMPP with a low number of iterations.
Comparison of the MFO, PO, and HMFOPO results verified the superiority of the
proposed hybrid method with less computational error, more tracking efficiency, and
more convergence speed in achieving global MPP.
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A New Hybrid Method Based on Gray
Wolf Optimizer-Crow Search Algorithm
for Maximum Power Point Tracking
of Photovoltaic Energy System

Faraji Davoodkhani, S. Arabi Nowdeh, Almoataz Y. Abdelaziz,
Saeedeh Mansoori, Sh. Nasri and Mohammad Alijani

Abstract In this study, a new hybrid method as gray wolf optimizer (GWO)-crow
search algorithm (CSA) (hGWO-CSA) is proposed for solving the MPPT problem
in PV energy system. In the proposed method, at first the GWO is applied for MPPT
solution and then the optimal duty cycle determined by GWO is considered as the
initial value to CSA method. In the hybrid method, the advantages of each method
are combined that it is a method with high convergence accuracy and speed and is
not trapped in local optimal and quickly achieves to global optimal. The proposed
methodperformance is analyzed inMPPTsolution under standard andpartial shading
condition (PSC), in solar and temperature variations and also considering various
types of DC/DC converters. To verify the validity of the hGWO-CSA, the results
are compared with GWO and CSA methods. The results show the superiority of
the hGWO-CSA in achieving the GMPP with higher convergence speed and less
transient oscillations in different condition and in comparison with GWO and CSA
methods. Also, the results show that the PV system with the buck-boost converter
has better performance due to the wider operation area in terms of extracted power
and tracking efficiency than the other DC/DC converters.
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1 Introduction

Photovoltaic (PV) energy is considered as one of the most promising renewable
energy sources. The PV cell is considered to be as an essential part of the photo-
voltaic system. In this system, PV radiation energy is converted into electricity by
photovoltaic effects [1, 2]. Receiving the maximum power point (MPP) from photo-
voltaic systems has a very important role due to increasing the efficiency. This can
be done by connecting a controller to the MPP due to regulating the work cycle for
the load. On the other hand, due to changing the output characteristic of photovoltaic
systems under various factors such as radiation and temperature variations, changing
the load size and partial shaded conditions (PSC), these systems work at the MPP
rarely [2, 3]. The output characteristic of the PV cells has multiple maximums when
they are under PSC [4]. Therefore, in the operation of photovoltaic cells, an algorithm
that guarantees MPP should be used when the operational point changes. Addition-
ally, DC/DC converters are widely used in PV systems as a mediate between PV
panel and load, where it is possible to track the MPP. By changing the duty cycle, the
load impedance seen by the source is varied and at the MPP it is matched with the
source, so the maximum power is transferred. For maximum power extraction, the
load has to be matched with the current and voltage of the PV panel. The converter
design should be such that it is connected directly to the PV panel and it is expected
to follow the MPP.

A lot of work has been done to improve the performance of photovoltaic (PV)
systems through the development of new algorithms in order to access to maximum
power point tracking (MPPT). Perturb and observe method (P&O) [5] and hill-
climbing method (H&C) [6] are widely used for MPPT due to this fact that they
require a smaller number of sensors, and therefore, their implementation is simple.
The incremental conductance (INC) algorithm [7] that compares incremental and
momentary conductance of PV can track the MPP of a photovoltaic system and
deliver a high photovoltaic energy to the load. Ripple correlation control (RCC) [8]
with the help of the converter due to controllingMPPT causes the ripple in the control
strategy. This method works very well in a high sunlight, but tracking efficiency
decreases in some conditions such as the low radiation. By removing the load of the
photovoltaic array, the current and voltage in the MPP of the photovoltaic system
can be determined by short-circuit current (SCC) [9] and open-circuit voltage (OCV)
methods [10]. However, the implementation simplicity of these algorithms causes
that they can be used as parts of a new combination technique. Artificial intelligence
(AI) techniques are used as alternativemethods insteadof the conventional techniques
[11]. These techniques have been used to solve complex practical problems in various
fields. The fuzzy logic method has also been successfully used to track the maximum
general power in photovoltaic systems under PSC. These methods have promising
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results, but they have big disadvantages like computational complexity [12]. Due to
the disadvantages of conventionalMPPT algorithms, several random algorithms, and
artificial intelligence methods have been developed. These new MPPT algorithms,
inspired by the nature and biology structure, have been developed to maximize the
output power arising from the photovoltaic array. These methods are particle swarm
optimization (PSO) [13] and genetic algorithm (GA) [14]. PSO and GA optimization
methods are easy to calculate and can be easily implemented on a low-cost digital
controller. Also, these methods are very successful due to obtaining the global peak
under PSC. In [15], gray wolf optimizer (GWO) is developed to solve the MPPT
problem considering DC/DC boost converter. The PSO method and its modified
version [16] have been used for global MPP (GMPP) tracking considering the buck-
boost converter, and suitable results have been obtained. Cuckoo search algorithm
(CSA) [17] is used for MPPT in PV systems with a buck converter and under PSC.
Also, MPPT by using golden section optimization (GSO) algorithm considering
the buck converter is implemented in [18]. In [19], MPPT is done using genetic
algorithm (GA) in PV systems, where a boost converter is utilized. Artificial bee
colony (ABC) optimization method is used in [20] for improving MPPT in PV
system under PSC considering a boost converter. In [21], simulated annealing (SA)
algorithm considering DC/DC boost converter, in [22] bat algorithm using buck-
boost converter, is applied for MPPT solution of PV modules under partial shading
conditions.

In addition, one of the important problems in solving the MPPT problem is uti-
lizing an appropriate DC/DC converter. Since a suitable DC/DC converter plays a
crucial role in achieving the maximum power of a given PV system, the impacts
of buck, boost, and buck-boost converters on problem solution of PVs MPPT have
to be accurately investigated. Hence, although selecting a desired DC/DC converter
for implementing MPPT system and the performance evaluation of various types of
DC/DC converters are considerably effective on optimal operation of the PV sys-
tem considering their operational and non-operational regions, they have not yet been
clearly studied and compared. Therefore, the performance evaluation of DC/DC con-
verters on problem solution of PVs MPPT is essential. The buck converter may not
track theMPP under high temperature (low voltage) and high radiation (high current)
since these environmental conditions established the MPP on the non-operational
region. Also, the boost converter is not capable of MPP tracking under low tem-
perature (high voltage) and low irradiation (low current). The buck-boost, or any
similar static characteristic converters, are able to find the MPP independently on
the environmental conditions, thus, this converters family are more appropriate to be
employed as MPPT, mainly in a situation which the environmental conditions range
widely.

There aremany literature works that discuss and compare the performance of each
of the MPPT methods. However, the reviews of these researches are not yet updated
and do not cover all MPPT methods under uniform radiation conditions and PSC
has not been properly evaluated on PVs MPPT in view of convergence speed and
efficiency. In this chapter, a new hybrid method as gray wolf optimizer (GWO)-crow
search algorithm (CSA) (hGWO-CSA) is proposed for solving the MPPT problem
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Fig. 1 Single diode model
of a PV cell [13]

in PV energy system. The GWO is presented based on hunting behavior of gray
wolves [15] and recently the CSA is presented in [23], and this algorithm is based on
the hiding of the crows extra food and call for food hiding place at the needed time.
Moreover, the effects of various types of DC/DC converters such as buck, boost, and
buck-boost in MPPT problem solution are accurately studied in view of convergence
speed, accuracy, and efficiency considering different partial shading conditions. So,
to verify the validity of the proposed hGWO-CSA method, the obtained results are
compared with the GWO and CSA method. In Sect. 2, modeling of PV energy
system is presented, also PV module characteristics are described in Sect. 2, too.
The MPPT proposed method is presented in Sect. 3. In Sect. 4, the simulation results
are presented and in Sect. 5, the results are concluded.

2 Modeling of PV Energy System

Figure 1 shows the single diode model of a PV cell. Based on Fig. 1, the amount of
generated electrical energy by the PV system is represented by current Iph which is
proportional to the solar radiation. The series and shunt resistors denote the internal
resistance and leakage current, respectively [13].

The mathematical equation of the PV cell is expressed as [13]:

IPV = IPh − ID − VD

RSh
(1)

The characteristics of a diode can be presented as follows [13]:

ID = IO
[
eVD/VTA − 1

]
(2)

The voltage of the diode is also written as [13]:

VD = (VPV + IPVRS) (3)

Photocurrent Iph is defined as (4) [13].
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Table 1 Data of the single
PV cell (KC200GT) [3]

Parameter Value

Maximum power (W) 200.143 W

Open-circuit rated voltage (V) 32.9 V

The voltage of maximum power point (V) 26.3 V

Short-circuit rated current (A) 8.21 A

Current of maximum power point (A) 7.61 A

Voltage temperature coefficient (V/K) −0.123

Current temperature coefficient (A/K) 0.0032

Series cells number 54

Parallel cells number 1

IPh = (ISC + K1(T − TRe f ))λ (4)

In the above equations, I0 is the saturation current of the cell, VT denotes the
thermal voltage of the PV modules, which is equal to kT/q. Also, q is the electrical
charge (1.6 × 10−19 C), k represents Boltzmann constant (1.38 × 10−23 J/°K), T
is the p-n joint temperature in °K, A shows the ideality factors of the diode and
depends on the technology of the PV, ISC shows the short-circuit current of the cell
under standard test conditions (STC) (1000 W/m2 at the temperature of 25 °C), K1

is the short-circuit current coefficient of the cell, T ref is the reference temperature of
the cell, and λ is the solar radiation inW/m2 [13]. In this study, the data of KC200GT
PV module [3] under STC (1000 W/m2 solar radiation and 25 °C temperature) are
listed in Table 1.

In PV systems, the output power depends on the solar radiation and the ambi-
ent temperature. These two factors determine the maximum power point (MPP). In
general, the temperature affects the output voltage of the PV system, while solar
radiation has an impact on the output current. In other words, the more the PV cell is
exposed to the solar radiation, the more current is generated at the output, and vice
versa.

3 Proposed Method

The employed MPPT system includes PV modules, a DC/DC boost converter, and a
load. The system is shown in Fig. 2. The PV voltage and current are calculated, and
the PV power is obtained via multiplying the voltage by current and then is applied
to the MPPT algorithm. Using the MPPT algorithm, a duty cycle, d is generated, and
DC/DC boost converter is activated (the parameters of DC/DC converter is taken
[13]). The amount of duty cycle (d) is considered as a decision-making variable in
the MPPT algorithm, and its corresponding output power is assumed as the fitness
value. Accordingly, the objective of the MPPT algorithm is to determine the optimal
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Fig. 2 General block diagram of the MPPT algorithm

duty cycle with the aim of extracting the highest power from the PV system based
on the MPPT method.

In this study, the proposed hGWO-CSA method is utilized to solve the MPPT
problem considering the boost converter. The hGWO-CSA is implemented based on
GWO and CSA combination. In the proposed hybrid method, the advantages of each
method are combined that it is a method with high convergence accuracy and speed
and is not trapped in local optimal value and quickly achieves to the global optimal
solution. In hGWO-CSA method, first, GWO method is used for solving the MPPT
problem through which the optimization variable, i.e., the duty cycle of the DC/DC
converter is optimally determined. Then, the determined duty cycle by GWO as the
initial value is applied to the CSA algorithm, and the CSA is employed to solve the
MPPT problem. Each method is described below.

3.1 Gray Wolf Optimizer (GWO) Algorithm

One of the population-based intelligent and evolutionary algorithms is the gray wolf
optimizer (GWO) algorithmwhich was first announced byMir-Jalali in 2014 [15]. In
this algorithm, the performance and behavior of graywolfs for hunting are simulated.
The parameters such as α, β, δ, and ω represent the leaders of the group so that α

directs the group as the leader and has important decisions about hunting, resting
place, and so on. The second group of leadership belongs to β. In addition to being
able to help α due to having a good decision, β members are also the best substitutes
for the α wolfs when they are old or dead. ω but is at the bottom of this group. They
are the last wolves that are allowed to eat. The other group members that are not α,
β, and ω are called δ. The principles of GWO function are as follows [15]:

• Investigating, pursuing, and following the hunt
• Pursuing, sieging, and harassing the hunt until it stops
• Attacking to the hunt.
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Fig. 3 2D and 3D position vectors and their possible next locations [15]

In the simulation of the GWO, α is considered as a top answer. After that, the next
two responses after α are considered β and δ. Finally, the rest answers are regarded
ω. Modeling a suitable situation that gray wolves encircle their hunt during hunting
are shown as follows:

−→
D =

∣∣∣
−→
C · −→

XP(t) − −→
XP(t)

∣∣∣ (5)

−→
X (t + 1) = −→

XP(t) − −→
A · −→

D (6)

where t represents the repetition,
−→
A ,

−→
C , and

−→
X P indicate the coefficients vectors,

the position of the bait, and the gray wolf, respectively.
The coefficients vector is obtained from the following equation:

−→
A = 2−→a · −→r1 − −→a (7)

−→
C = 2−→r2 (8)

where vectors of random numbers at a distance are shown by �r1 and �r2 that are
selected from [0, 1] area and vector �a decreases from 0 to 2 during repetitions. The
2D and 3D position vectors and their possible next locations in GWO are illustrated
in Fig. 3.

To implement the MPPT based on GWO, the duty cycle, D, is defined as a gray
wolf. Hence, Eq. (9) can be modified as:

Di (k + 1) = Di (k) − A · D (9)

Consequently, the objective function of the GWO algorithm is formulated.

P(dk
i ) > P(dk−1

i ) (10)
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Fig. 4 Structure of CSA [24]

where P shows the power, d is the duty factor, i is the current number of gray wolves,
and k is the number of iterations.

3.2 Crow Search Algorithm (CSA)

The novel meta-heuristic crow search algorithm was first introduced by Asgarzadeh
(2016) by inspiration from social to smart behavior crows [23]. Meta-heuristic crow
search algorithm (CSA) was developed based on smart behavior of crows especially
when following and finding food caches of other crows. Principles of this algorithm
include the following items [23, 24]:

• Crows live in groups.
• Crows remember positions of their sanctuary.
• Crows track each other to thieve.
• Crows protect their stores against probable thievery.

Structure of CSA is illustrated in Fig. 4. The algorithm procedure is as follows:
Similar to other population-based algorithms, it is assumed that there are a number
of N crows in the d-dimension search space. Every crow i in the search space is
defined by a vector. These vectors are expressed as:

xi,i t = [xi,it1 , xi,it2 , . . . , xi,itd ] (11)
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In the above definition: i = 1, 2, . . . , N and it = 1, 2, . . . , itmax where itmax is
the maximum number or iterations. Also, every crow has a memory in which it mem-
orizes the best experience of sanctuary position (duty cycle of DC/DC converter).
At each iteration, the position of crow i’s sanctuary is presented by mi,it. T position
is the best place observed by crow I so far and is described by

mi,it = [mi,it
1 ,mi,it

2 , . . . ,mi,it
d ] (12)

Crowsmove in this space and search for better food supplies (sanctuaries). Updat-
ing steps for crow positions are performed as below.

Step 1: A crow is randomly selected among the population (a random integer
between 1 andN, for example, j). Crow i attempts to track crow j to find its sanctuary
(mj). In this case, according to awareness of crow j about being tracked by crow i,
two modes may occur. To simulate these modes, a random number with a uniform
distribution between 0 and 1 is generated. If this value is greater than a parameter
called awareness probability (AP), then go to Step 2, otherwise go to Step 3.

Step 2: In this mode, crow j is not aware of being tracked by crow i. Therefore,
crow i reached crow j’s sanctuary based on the following equation:

xi,it+1 = xi,it + ri × f l × (
mi,it − xi,it

)
(13)

where xi,i t+1 is crow i’s position at iteration t + 1, xi,i t is crow i’s position at
iteration t, mi,it is memorized position of crow j at iteration t, ri is a random number
with uniform distribution in the range [0, 1], and fl is named flight length.

Small values of fl are results of local search (neighborhood of xi,it), and big values
are the results of global search (away from xi,it). If fl value is chosen less than 1, then
the next position of crow i will be along the distance line between x i,it and m i,it. If
fl value is more than 1, then the next position of crow i is a line that may cross mi,it.

Step 3: Crow j knows that crow i is tracking him, so in order to protect his store
from crow j with a random movement goes to another place in the environment
(search space) and this way crow j is deceived. This is expressed as follows in the
summary:

xi,it+1 =
{
xi,it + ri × f l × (

mi,it − xi,it
)
if ri ≥ AP

a randomposition, otherwise
(14)

Step 4: After updating the position of crow i, his memory is also updated as:

mi,it+1 =
{
xi,it+1, if F(xi,it+1) < F(mi,it)

mi,it, otherwise
(15)

where F(.) is the value of the objective function (PV power).
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Fig. 5 Flow chart of hybrid proposed algorithm

In CSA, all crows generate new positions and update their memories. These steps
continue until the maximum number of iteration itmax is reached. Finally, the best
solution for memories is selected as the optimized solution by the CSA algorithm.

Flow chart of hybrid proposed algorithm in MPPT solution is illustrated in Fig. 5.
The combined method makes it possible for the presented method to be faster and

not optimal locally. GWO’s approach to larger scale optimization problems may not
be able to achieve rapid convergence and is trapped locally. The proposed method is
presented to overcome some of the challenges faced by the optimization method in
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terms of increasing problem dimensions and also to achieve faster convergence. The
objective is to ensure appropriate coverage of the search space related to the range
of optimization variables, as well as to achieve optimal global convergence.

4 Simulation Results

In this section, theMPPT simulation results of the PV system under the standard, dif-
ferent partial shading conditions and also solar and temperature variations using the
proposed hGWO-CSA method are presented. Also, to verify the proposed method,
the MPPT problem is solved using GWO and CSA methods and the results are
compared and analyzed. The simulations are developed in MATLAB/Simulink envi-
ronment to achieve the GMPP.

4.1 Simulation Results Under STC

In this section, the performance of the proposed method for solving the MPPT prob-
lem under STC (G = 1000 W/m2, T = 25 °C) is described. To assess the capability
of the proposed method, the MPPT problem is carried out with both of GWO and
CSA methods and then the results are compared. Figure 6 shows the current, volt-
age, and power of the PV module along with the converter’s duty cycle. As seen,
the hGWO-CSA method presents lower oscillations and higher convergence speed
to reach the GMPP than other methods. One can easily observe that the combination
of GWO and CSA lead to the hGWO-CSA method which boosts the performance
of each of these methods such that the GMPP is reached at a smaller settling time.

The hGWO-CSAmethod converges to theMPP, and the voltage and current of the
PV module are maintained with no oscillations. The time response of hGWO-CSA
for obtaining the steady-state operating point is around 0.01 s, and the corresponding
times for GWO and CSA methods are about 0.016 and 0.039 s, respectively. There-
fore, the proposed method provides a higher convergence speed. The steady-state
value of the PV power for all methods is equal to 198.9 W.

4.2 Simulation Results Under Variable Solar Radiation
Conditions

In this section, the effects of solar radiation changes on solving the MPPT problem
are evaluated using the proposed method. In this case, the temperature is assumed
to be constant equal to T = 25 °C. The time step for the solar radiation changes
is considered 0.2 s as such that the initial radiation is 400 W/m2 and it is reached
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Fig. 6 Tracking curves of the PVmodule using GWO, CSA, and hGWO-CSAmethods under STC

800 W/m2 during 0.2–0.4 s, and finally, its value if 1000 W/m2 during the time span
of 0.4–0.6 s. The obtained results from solving the MPPT problem using different
mentioned methods under variable solar radiations are depicted in Fig. 7. According
to Fig. 7, the performance of the hGWO-CSAmethod is significantly superior to other
methods in terms of convergence speed and accuracy to reach the maximum power
of the PV system, where minor transient oscillations are observed in hGWO-CSA
method. In addition, the increase in the radiation reduces the voltage and increases
the current of the PV system. As a result, the output power of the PV module is
increased. Therefore, the proposed method has better capabilities under variable
solar radiations in comparison with other methods.

4.3 Simulation Results Under Variable Temperature
Conditions

In this section, the effects of temperature changes on the response of the MPPT
problem using the proposed method are investigated. In this case, the solar radiation
value is assumed equal to 1000W/m2. The time step for temperature changes is 0.2 s,
and the temperature values are selected in a stepwisemanner, respectively, equal to 25,
50, and 70 °C. The obtained results from solving the MPPT problem using different
methods under variable temperature conditions are shown in Fig. 8. The performance
of the hGWO-CSA method compared to other methods is illustrated. Based on the
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Fig. 7 Tracking curves of the PV module using GWO, CSA, and hGWO-CSA methods under
variable solar radiation conditions

results, one can conclude that the increase in the temperature leads to the voltage
reduction and as a result output power reduction of the PV module. Additionally, it
is observed from the results that the hGWO-CSA method presents lower transient
oscillations and higher convergence speed in solving the MPPT problem than other
mentioned methods.

4.4 Simulation Results for Shading Pattern 1

In this section, the performance of the proposed method under partial shading condi-
tions (PSCs) is studied. In this case, two PV modules are connected in series to each
other. First, the PVmodules operate under STC.Next, during 0.2 s, the PSC is applied
and the solar radiation for one of the modules is reduced from 1000 to 800 W/m2,
where under STC and PSC the peak power is 400 W and 340 W, respectively. The
simulation results of the PV system using GWO, CSA, and hGWO-CSA methods
are shown in Fig. 9. At time t = 0.2 s, one of the modules receives solar radiation
of 800 W/m2, and this causes the PV array to suffer from PSC. In this case, the P–V
characteristics curve presents two peak points, and the GMPP is 340 W. The results
show that hGWO-CSA algorithm rapidly converges to the desired voltage, and this
leads to the MPP of 339.5 W under PSC considering the switching losses.
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variable temperature conditions
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Fig. 9 Tracking curves of the PV module using GWO, CSA, and hGWO-CSA methods under
shading pattern 1
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Fig. 10 Tracking curves of the PV module using GWO, CSA, and hGWO-CSA methods under
shading pattern 2

Under such conditions, all algorithms have reached the maximum power points.
The noticeable difference among these methods is the convergence speed to reach
the MPP. The performance of hGWO-CSA method dominates the other methods.

4.5 Simulation Results Under Shading Pattern 2

In this section, two PV modules are connected in series. The shading conditions are
considered as follows. One of the PV modules receives solar radiation of 800 W/m2

and the other one 1000 W/m2. The temperature is assumed to be constant equal to
25 °C. The obtained results from the simulations for shading pattern 2 are shown in
Fig. 10. As seen, the hGWO-CSA-basedMPPT is not tramped in the local maximum
power point (LMPP) of the P–V curve, but accurately converges to the global MPP
(GMPP). As observed from the obtained response, the hGWO-CSAmethod presents
lower power oscillations and rapidly converges to the steady-state condition. In the
proposedmethod, the convergence time is 0.02 s. The corresponding values forGWO
and CSA methods are 0.0.34 s and 0.043 s, respectively. Therefore, similar to other
performed simulations, the hGWO-CSA method provides better results compared
to GWO and CSA methods under shading pattern 2, and this proves the superiority
and efficiency of the proposed method.
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4.6 Simulation Results Using Different Converters

The effect of utilizing different DC/DC converters in solving the MPPT problem
using hGWO-CSA method and considering shading pattern 2 is studied in this
section. In the base mode, the boost converter is considered for simulation. In this
section, the performance of the proposed method taking into account the buck and
buck-boost converters is also investigated.Thepower curve of thePVsystem is shown
in Fig. 11. As can be seen, the convergence rate of the MPPT problem equipped with
the buck-boost converter is more than the PV system equipped to other converters.
Also, the amount of power extracted using the buck-boost converter is more than the
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Fig. 11 Tracking curves of the PV module using GWO, CSA, and hGWO-CSA methods under
shading condition 2 using different converters
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other converters, due to the wider operation range of the buck-boost converter than
the other converters.

5 Conclusion

In this chapter, a new method named hybrid gray wolf optimizer-crow search algo-
rithm (hGWO-CSA) is proposed to solve the MPPT problem in PV energy system.
In the proposed method, at first the GWO is applied for MPPT solution and then
the optimal duty cycle determined by GWO is considered as the initial value to the
CSA method. The duty cycle of the converter is considered as the optimization vari-
able, and the output power of the PV system with respect to the determined duty
cycle is optimally obtained through the hGWO-CSA method. The superiority of the
hGWO-CSA under standard, solar and temperature variations and also in different
partial shading patterns is investigated. Also the effects of various types of DC/DC
converters are evaluated in MPPT solution. The performance of the hGWO-CSA
method is compared with the GWO and CSA method. The obtained results showed
that the superiority of the hGWO-CSA in achieving the GMPP with higher conver-
gence speed and less transient oscillations in different conditions and in comparison
with GWO and CSA methods. Also, the results showed that the PV system with the
buck-boost converter has higher convergence speed and more extracted PV power
due to wider operation range than the other DC/DC converters in GMPP finding.
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Dynamic Modeling Analysis
of Direct-Coupled Photovoltaic Power
Systems

Ahmed A. S. Mohamed

Abstract Photovoltaic (PV) cells utilization is getting more attention due to the
depletion of the world’s natural resources and the increased progress in power elec-
tronics and semiconductor technologies. The first step to analyze and study a PV
power system is to develop a model that is capable of providing an accurate predic-
tion for the system’s performance at different operating conditions. The availabil-
ity of precise models for PV systems in hand allows the designers, operators, and
researchers to predict, optimize, and evaluate the behavior of the system under dif-
ferent dynamics amid the development, which is very helpful for design and control
purpose. Additionally, these models help to investigate the interaction between the
PV system and other connected networks. Therefore, this chapter presents a general
mathematical dynamic modeling technique for direct-coupled PV power systems.
The nonlinear mathematical formulas for each component in the system are derived,
and the connection among the different components is addressed. The modeling
approach is applied to two different direct-coupled PV systems: grid-connected and
stand-alone system. The accuracy of the developed models was verified based on
the simulation and experimental data. The results demonstrate the ability of the pro-
posed models for predicting the system performance under different environmental
and operating conditions.

1 Introduction

Growing concerns for the depletion of the world’s natural resources and our future
energy supply has increased the need and development of solar power. The most
critical advancement in the development of solar technology has been the photo-
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voltaics (PV). PV power system is a solar energy system that uses semiconductors to
directly convert solar radiation into electricity. PV systems are composed of a large
number of cells arranged in the formation on a metal frame, which is known as a
PV module. When exposed to sunlight, these cells produce a small direct current of
electricity, and when used in masse will generate a large amount of electrical power
with no moving parts, noise, or emissions [1]. The amount of electricity generated
is dependent on several factors, such as the size and arrangement of the PV system,
the PV module array, and the efficiency of the electrical components used to convert
solar energy into electricity. In general, the PV systems can be categorized based
on the connectivity with the power grid, into a grid-connected (utility interactive) or
stand-alone (off-grid) system [2]. For each category, the system can be coupled with
the load or the grid either directly or indirectly. The indirect-coupled PV system, the
DC energy from the PV generator, is regulated and converted to AC to either supply
AC loads or feed an AC bus. In direct-coupled PV systems, which are the main focus
of this chapter, the PV generator is connected to a DC component (either a load in
stand-alone systems or a common bus in grid-connected systems) through a DC–DC
converter. Direct-coupled grid-connected PV configurations are commonly used in
the DC microgrids structure, in which all the resources and loads are integrated
through a common DC bus [3], as indicated in Fig. 1. In this case, the PV system
is operating in unidirectional mode to generate the maximum amount of energy and
through it in the common bus. The direct-coupled stand-alone PV structures appear
in situations, inwhich the supplied loads areDC, such asDCmotors in solar pumping
applications [4]. The direct-coupled PV configurations contain a DC–DC converter
that is responsible for regulating the array voltage to the appropriate level of the DC
element. Additionally, the same converter is in charge of extracting the maximum
power from the PV panel regardless of the environmental and load conditions to
provide maximum power point tracking (MPPT) capability. The derivation of the
dynamic models for the PV panel, DC–DC converter with MPPT and DC element
are presented in this work in detail. The dynamic models are utilized to simulate
and predict the entire PV systems’ performance under different dynamics, such as
variation in the weather conditions. Furthermore, they are used to evaluate the track-
ing performance of theMPPT under different irradiance and temperature conditions.
Then, the developed dynamic models are linearized to state the small-signal models
for both the grid-connected and stand-alone PV systems. These small-signal models
are utilized to predict the effect of the small variation in the solar irradiance, cell tem-
perature, and the duty cycle of the DC–DC converter due to the control and MPPT
actions, and to state design criteria for MPPT algorithm’s parameters. The developed
dynamic and small-signal models are implemented in MATLAB environment and
verified by means of the simulation and experimental data.
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2 Direct-Coupled Grid-Connected PV Power System

Considering the DC microgrid configuration in Fig. 1, the PV power system under
study consists of a PV array connected to a DC bus through a unidirectional DC–DC
converter, as shown in Fig. 2. The DC–DC converter is chosen to be a Cuk type to
allow both step-up and step-down voltage capability. Additionally, it has a capacitive
isolation capability, which protects against switch failure.Moreover, the input current
of the Cuk converter is continuous and almost ripple-free output current, which is
important for efficient system operation.

The DC bus is coupled to the power grid through a bidirectional three-phase grid-
tie converter. This converter is taking charge of managing the power flow between

Wind 
system

Energy storage system

Utility
grid

Fuel cell

EV charging

DC Bus

DC residential load

PV 
system

Fig. 1 Block diagram of a DC microgrid configuration

Fig. 2 Block diagram of
direct-coupled
grid-connected PV power
system

MPPT and ControlPV array
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the DC microgrid and the utility grid, in addition to regulating the DC bus voltage
to a certain level.

3 Nonlinear Dynamic Model of Grid-Connected PV Power
System

The details of the nonlinear dynamic equations for the direct-coupled grid-connected
PV power system are presented in this section. Themodel formulas are derived based
on the electric circuit model of each component in the system. The individual equiv-
alent circuits are lumped together in one circuit that represents the entire PV power
system, as shown in Fig. 3. The system contains a PV array, DC–DC Cuk converter,
andDCbus. The PV panel is represented by the single-diode (four parameters)model
equivalent circuit. TheCuk converter ismodeled by its ideal passive componentswith
neglecting the resistive losses. Since the DC bus voltage is kept fixed by the grid-tie
converter, the DC bus is denoted in the model by a fixed DC source (V dc) with a
series resistance (Rdc) that emulates its resistive losses. The details for the dynamic
equations of each component are presented in the following sections.

3.1 PV Panel Dynamic Model

Two advanced equivalent circuit PV models are proposed in the literature: single-
diode and double-diode model. The double-diode model features high accuracy
since it considers the carriers’ recombination. The first diode accounts for carri-
ers diffusing across the P–N junction and recombining in the bulk or at surfaces.
The second diode is sometimes attributed to carrier recombination by traps within
the depletion region or recombination at an un-passivated cell edge. This model
is rarely used due to its complexity, high computational cost, and inability to be
parameterized based solely on data sheet information [5]. Single-diode model is
the most commonly used in PV systems’ studies, because it offers a reasonable
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-
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d
C2

vc2 +
-

Fig. 3 Equivalent circuit of the direct-coupled grid-connected PV power system under considera-
tion



Dynamic Modeling Analysis of Direct-Coupled Photovoltaic Power … 443

trade-off between simplicity and accuracy. Also, it has the possibility to be param-
eterized based on the provided information in the manufacture’s datasheet [6]. A
comparative analysis between the performances of the single- and double-diodemod-
els has been conducted in [7]. The single-diode model shows an average absolute
error= 0.0085 and root-mean-square (RMS) error= 1.67%. By using the two-diode
model, it introduced some singular solutions. After solving the issue by adding more
complexity to the analysis, it gave an average absolute error = 0.0080 and RMS
error = 1.35%. Both the errors are slightly reduced compared with the one-diode
model results. Also, the study showed that the reverse saturation current of the second
diode is indeed extremely close to zero, whereas other parameters are comparable
to their counterparts in the one-diode model. It was concluded that the one-diode
model is good enough to represent the whole I–V characteristic accurately. There-
fore, in this work, the PV panel is modeled based on the single-diode equivalent
circuit model, as shown in Fig. 3 and its I–V characteristic is presented in Eq. (1).

ipv = Isc − Ir

(
e

vpv+ipvRs
nVT − 1

)
−
(

vpv + ipvRs

Rp

)
; VT = kT

q
(1)

where ipv and vpv are the PV output current and voltage, respectively, Isc is the
photon (short circuit) current, q is the charge of electron (C), k is Boltzmann constant
(kg m2/s2K), T is cell temperature (K), n is the diode ideality factor, Rs is the series
resistance, Rp is the parallel resistance, and Ir is reverse saturation current.

The series resistance (Rs) stands for the lumped resistive losses in the current path
through the semiconductor material, the metal grid, contacts, and current collecting
bus. The parallel resistance (Rp) represents the losses associated with a small leakage
of current through a resistive path in parallel with the intrinsic device. These are due
to crystal damage and impurities in and near the junction. Considering Rp allows the
model to provide a logic behavior under the impact of shading on a string of cells
connected in series. The effect of Rp on the PV array performance is less conspicuous
compared to the series resistance, but it will become noticeable when a large number
of PV modules are connected in parallel for a larger system. The recombination in
the depletion region of PV cells provides non-ohmic current paths in parallel with the
intrinsic PV cell. This is represented by a single diode with unknown diode ideality
factor (n) [8]. This factor (n) ranges from 1 to 2, where 1 ideality factor means ideal
diode behavior.

For the purposes of performing small-signal analysis, it is easier to express the
PV panel output voltage in terms of its current. By rearranging Eq. (1), a second
formula for the PV panel I–V characteristic is obtained, as indicated in Eq. (2).

vpv = nVT ln

⎡
⎣ Ir + Isc − ipv −

(
vpv+ipvRs

Rp

)
Ir

⎤
⎦− ipvRs (2)
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By applying the open-circuit conditions on the PV panel (vpv = V oc and ipv = 0),
an expression for reverse saturation current in terms of the panel parameters can be
obtained, as in Eq. (3).

Ir =
(
Rp Isc + Voc

)
[
Rp

(
e

Voc
nVT − 1

)] (3)

where V oc is the open-circuit voltage of the PV module.
By inserting Eq. (3) into Eq. (2), a third accurate formula for the I–V characteristic

of PV panel is given in Eq. (4).

vpv = nVTln

[
1 +

(
e

Voc
nVT − 1

)( Rp
(
Isc − ipv

)+ ipvRs + vpv

Rp Isc − Voc

)]
− ipvRs (4)

This equation can be simplified under the assumption of
(
e

−Voc
nVT � 1

)
, as given

in Eq. (5).

vpv = Voc + nVTln

[
Rp Isc − ipv

(
Rp − Rs

)+ vpv

Rp Isc − Voc

]
− ipvRs (5)

3.2 DC–DC Converter with DC Bus Model

DC–DCCuk converter is selected in this work to boost up the PV panel voltage to the
DC link voltage level. Additionally, it is controlled to track themaximumpower of the
PV panel regardless of the irradiance and temperature variation. The circuit diagram
of Cuk converter is shown in Fig. 3. It consists of an input inductor (L1) and capacitor
(C1), power electronic switch (SW) [metal–oxide–semiconductor field-effect tran-
sistor (MOSFET) or insulated-gate bipolar transistor (IGBT)], which is controlled by
the duty cycle (d), power semiconductor diode (Dc), and output filter capacitor (C2),
and inductor (L2) to smooth the output voltage and current. Under the assumption
that the inductor current is always positive, when the switch SW is ON, the diode is
OFF and the capacitor C1 is discharged by the inductor L2 current. When the switch
is OFF, the diode conducts the current of the inductors L1 and L2 whereas capacitor
C1 is charged by the inductor L1 current. The Cuk converter offers several advan-
tages, such as providing capacitive isolation, which protects against switch failure,
continuous input current, and almost ripple-free output current, which is important
for efficient systems. The passive components (L1, L2, C1, and C2) are designed
based on the switching frequency, and the output voltage and current ripple [8].

Following the state-space representation theory, the dynamic performance of the
Cuk converter andDCbus is represented by four nonlinear ordinary differential equa-
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tions (ODEs) that describe the inductors’ current (iL1= ipv and iL2) and capacitors’
voltage (vC1 and vC2). The final set of nonlinear ODEs are stated in Eq. (6).

pipv = 1

L1

[
vpv − (1 − d)vC1

]

pvC1 = 1

C1

[
d iL2 + (1 − d)ipv

]

piL2 = 1

L2
(−d vC1 − vC2)

pvC2 = 1

C2

(
iL2 − vC2

Rdc
+ Vdc

Rdc

)
(6)

where the symbol p represents the differential operator
(
d
dt

)
.

Equations (4) and (6) represent the nonlinear state-space dynamic model for the
entire direct-coupled grid-connected PV power system. These equations are imple-
mented and analyzed in MATLAB environment to simulate the PV system per-
formance. Equation (6) is solved by means of the numerical integration technique
(Runge–Kutta) and Eq. (4) is solved by the iterative technique (Newton–Raphson).

4 Small-Signal Analysis of Grid-Connected PV Power
System

For proper converter control system design, it is necessary to model the system
dynamic behavior. In particular, it is required to determine how the variations in the
converter duty cycle affect the PV power and voltage. Unfortunately, understanding
converter dynamic behavior is hampered by the nonlinear time-varying nature of the
switching and pulse-width modulation process. These difficulties can be overcome
through the use of waveform averaging and small-signal modeling techniques [9].
The dynamic model that is presented in the previous section is linearized to state the
small-signal model for the PV power system.

4.1 PV Panel Small-Signal Model

The main function of MPPT in a PV system is to keep the PV panel working at
the maximum power point (MPP) regardless of the irradiance level and temperature.
Therefore, in the PV systems that contain MPPT, it is fair enough to assume that the
system is always generating themaximum power and the operating point matches the
MPP [10, 11]. When the PV panel is operating at MPP, the variation of the operating
point around the MPP due to the fast control action (5–20 kHz) can be linearized
using the small-signal analysis. This analysis can be performed by assuming small
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variations in the different dynamics that the PV panel is usually subjected to. The
disturbance in PV panel output is mainly due to the variation of temperature, radi-
ation, and load conditions. Thus, the small variation in the PV output voltage (v̂pv)

will be affected by the small variation in PV current (îpv), radiation level (ĝ), and
cell temperature (t̂) [12]. If these conditions slightly change around the operating
point, it can be written as:

G = GQ + ĝ

T = TQ + t̂

ipv = IpvQ + îpv

where G, T, and ipv are the dynamic irradiance level, temperature, and PV current,
respectively,GQ, TQ and IpvQ are the average of these variables at the quiescent point

(Q), and ĝ, t̂ and îpv are their small variations. Thus, the small-signal representation
of the PV voltage at any operating point (e.g. MPP) is described in Eq. (7).

v̂pv = Kiv îpv + Kgvĝ + Ktv t̂ (7)

where Kiv is the variation of the PV voltage with respect to the variation of PV
current, which represents the slope of I–V characteristic at the operating point; Kgv

is the variation of the PV voltage with respect to the variation of the irradiance level;
and Ktv is the variation of the PV voltage with respect to the variation of the cell
temperature.

These small-signal coefficients (K iv, Kgv, and K tv) can be evaluated using an
explicit PV voltage equation as a function of current, radiation, and temperature.
Small approximation needs to be applied to Eq. (5) to put it in an explicit form.
This form can be obtained by neglecting the shunt resistance effect in Eq. (5) by
assuming very large resistance (Rp ≈ ∞). In [13], the effect of Rp on the MPPT
control performance is studied for a certain PV module. It shows that at high values
of Rp (≥601.34 �), its effect is negligible. Based on this study, we conduct a study
for the effect of Rp on the I–V characteristics of the used PV module (BP 4175T
PV array) in this work at different climatic conditions, as depicted in Fig. 4. It can
be noticed that for high values of Rp (≥100 �) its impact on the slope at MPP is
negligible, even at different climatic conditions. Therefore, its effect on the small-
signal analysis will be unnoticeable. The estimated Rp for the used PVmodule in this
work is 2.8 k�, as will be demonstrated later, which is much larger than 100 � [13].

By applying this approximation onEq. (5), an explicit PVmodel that is appropriate
for the small-signal analysis is obtained in Eq. (8).

vpv = Voc + nVT ln

[
1 − ipv

Isc

]
− ipvRs (8)
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Fig. 4 Effect of Rp on I–V
characteristics of PV module
at different climatic
conditions
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where V oc, Isc, and VT are function of the cell temperature and irradiance level as
described in Eqs. (9), (10), and (11), respectively.

Voc(T,G) = Voco [1 + β(T − To)] + VTo ln
(

G
Go

)
(9)

Isc(T,G) = Isco
(

G
Go

)
[1 + α(T − To)] (10)

VT(T ) = VTo

(
T
To

)
(11)

By differentiating Eq. (8) with respect to the PV current, an expression for the
coefficient Kiv at the Q-point is obtained in Eq. (12).

KivQ = dvpv

dipv

∣∣∣∣
Q

= −
nVTQ

(
1 − e

− VocQ
nVTQ

)

[
IscQ − IpvQ

(
1 − e

− VocQ
nVTQ

)] (12)

where the subscript (Q) denotes the variables at the operating point (Q-point).
For the radiation coefficient Kgv, Eq. (8) is differentiated with respect to the

radiation level (G), as given in Eq. (13).

KgvQ = dvpv

dG

∣∣∣∣
Q

= dvOC
dG

∣∣∣∣
Q

+ nVTQ

d

dG

[
ln

(
1 − ipv

Isc

)]∣∣∣∣
Q

− Rs · dipv
dG

∣∣∣∣
Q

(13)
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Using Eqs. (9), (10), and (11), with the assumption of, di pv
dG

∣∣∣
Q

≈ disc
dG

∣∣
Q
at MPP, the

final formula for the radiation coefficient at Q-point is given in Eq. (14). Similarly,
the temperature coefficient at Q-point, Ktv, is presented in Eq. (15).

KgvQ = dvpv
dG

∣∣∣∣
Q

= VTo

GQ
−
(
Isco
Go

)[
1 + α

(
TQ − To

)](nVTQ

IscQ
− Rs

)
(14)

KtvQ = dvpv

dT

∣∣∣∣
Q

= βVoco −
(

αGQ Isco
Go

)(
Rs + nVTQ

IscQ

)
+ nk

q
ln

(
1 − IpvQ

IscQ

)
(15)

where the subscript (o) distinguishes the variables at standard test conditions (STC),
which are available in the PV module manufacture’s datasheet.

4.2 DC–DC Converter and DC Bus Small-Signal Model

The DC–DC converter and DC bus are modeled based on the state-space averaging
technique in [14]. Each variable in Eq. (6) is replaced by the superposition of the aver-
age value and the variations; f = FQ + f̂ where f = {ipv, vpv, vC1, iL2, vC2, D} FQ

is the average value of the variable f at the Q-point and f̂ is the variation of f around
the Q-point. For example, ipv = IpvQ + îpv. In this analysis, the DC components
and the second-order small variation terms are neglected. Thus, final small-signal
representation of the DC–DC Cuk converter with the DC bus is given in Eq. (16).

pîpv = 1

L1

[
v̂pv − (DQ − 1

)
v̂C1 + VC1Q d̂

]

pv̂C1 = 1

C1

[
DQ îL2 + (1 − DQ

)
îpv + (IL2Q − IpvQ

)
d̂
]

pîL2 = 1

L2

(
−DQv̂C1 − v̂C2 − VC1Q d̂

)

pv̂C2 = 1

C2

(
îL2 − v̂C2

Rdc

)
(16)

By mixing the PV array in Eqs. (7), (12), (14), and (15), with the Cuk converter
and the DC bus models in Eq. (16), the final small-signal model for grid-connected
PV system is obtained. Based on these equations, the state-space representation for
the system is given Eq. (17).

ẋ = Ax + Bu; y = Cx + Du (17)

where x = [ îpv v̂C1 îL2 v̂C2
]T
; u =

[
d̂ ĝ t̂

]T
; and y = [ îpv v̂pv

]T
.
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A =

⎡
⎢⎢⎢⎣

Kiv
L1

DQ−1
L1

0 0
1−DQ

C1
0 DQ

C1
0

0 −DQ

L2
0 −1

L2

0 0 1
C2

−1
RdcC2

⎤
⎥⎥⎥⎦; B =

⎡
⎢⎢⎢⎢⎣

VC1Q

L1

Kgv

L1

Ktv
L1

IL2Q−IpvQ
C1

0 0
−VC1Q

L2
0 0

0 0 0

⎤
⎥⎥⎥⎥⎦

C =
[

1 0 0 0 0 0
Kiv 0 0 0 0 0

]
; D =

[
0 0 0
0 Kgv Ktv

]

4.3 Small-Signal Perturbation Analysis

The maximum power point tracker in PV system is responsible for adjusting the
duty cycle of the DC–DC converter to force the operating point to match the MPP.
Therefore, the main effect of the controller on MPPT is applying a small variation
of duty cycle. By considering fixed temperature and irradiance level, the effect of
the small variation of duty cycle on the PV output (voltage, current, and power) at
steady state can be investigated by following the state-space averaging technique in
[14]. By considering the variation in duty cycle only as an input in Eq. (17), the
state-space model can be rewritten as in Eq. (18).

ẋ = Ȧ x + Ḃ d̂ (18)

where Ȧ =

⎡
⎢⎢⎢⎣

Kiv
L1

DQ−1
L1

0 0
1−DQ

C1
0 DQ

C1
0

0 −DQ

L2
0 −1

L2

0 0 1
C2

−1
RdcC2

⎤
⎥⎥⎥⎦; Ḃ =

⎡
⎢⎢⎢⎢⎣

VC1Q

L1
IL2Q −IpvQ

C1−VC1Q

L2

0

⎤
⎥⎥⎥⎥⎦

By applying the averaging technique in the model in Eq. (18), the average small
variation in state-space variables can be evaluated as in Eq. (19).

x = −A−1B d̂ (19)

By solving Eq. (19), the average small variation of the PV current
〈
îpv
〉
with

respect to the perturbation in the duty cycle is stated in Eq. (20).

〈
îpv
〉
= If

〈
d̂
〉

If = − DQVC1Q+Rdc(1−DQ)
(
IpvQ−IL2Q

)

KivD2
Q−Rdc(1−DQ)

2

(20)

where DQ, VC1Q , IL2Q and IpvQ are the steady-state values of the duty cycle, capacitor
(C1) voltage, inductor (L2) current, and PV current at the MPP, respectively.
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The average PV voltage perturbation is obtained by combining Eqs. (7) and (20),
as in Eq. (21).

〈
v̂pv
〉 = Kiv If

〈
d̂
〉

(21)

By applying the small-signal concept and neglecting the second-order variation
terms, the PV power small variation

〈
p̂pv
〉
is deduced in Eq. (22) [11].

〈
p̂pv
〉 = 〈v̂pv〉IpvQ + VpvQ

〈
îpv
〉

(22)

Thus, the perturbation in the PV power with respect to the perturbation in the duty
cycle is obtained by inserting Eqs. (20) and (21) into Eq. (22), as given in Eq. (23).

〈
p̂pv
〉 = (Kiv IpvQ + VpvQ

)
If
〈
d̂
〉

(23)

Equations (20), (21), and (23) represent the key design formula that can be used to
choose the proper perturbation size in perturb and observe (P&O) MPPT algorithm.
Equation (21) is useful when the control is based on the voltage observation, while
Eq. (20) is used when the current observation is considered.

5 Direct-Coupled PV Pumping Power System

Stand-alone PV systems are ideal for remote rural areas where other power sources
are either impractical or unavailable [15]. Among the different applications of off-
grid PV systems is the PV pumping system (PVPS). This system is widely used in
domestic and livestock water supplies and small-scale irrigation systems, especially
those employed for water and energy conservation such as low-head drip irrigation
systems [16]. Typically, PVPS consists of PV array, drive system, and storage ele-
ment, which can be a battery bank or/and a water tank. The drive system is composed
of a motor pump set and a power-conditioning component to extract the maximum
power from the PV panel and drive the motor. The most commonly utilized motor
in stand-alone battery-less PVPS is the permanent magnet (PM) DC motor, since it
can perform well even under low irradiance level and it is simple in control [4].

In PM DC motor-based PVPS, one or more DC–DC converters are required
between the PV panel and the motor for control and drive purposes. Four differ-
ent system topologies can be found in the literature: (1) direct coupled: the PV panel
is directly connected to themotor pump set [17], (2) usingMPPTconverter: aDC–DC
converter is introduced between the PV panel and the motor to perform MPPT [18],
(3) using driver converter: in this case, the DC–DC converter is used for motor con-
trol [19], and (4) using MPPT and driver converter: two DC–DC converters are used
for MPPT and motor drive [20].
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Fig. 5 Equivalent circuit of the direct-coupled PV pumping system under consideration

The PVPSunder consideration consists of a PVarray connected to a PMDCmotor
coupled with a positive displacement (PD) hydraulic pump through a DC–DC Cuk
converter, as shown in Fig. 5. The mathematical nonlinear and small-signal models
for the PVPS are derived similar to the presented analysis for the grid-connected
configuration.

5.1 Nonlinear Dynamic Model

In the case of PVPS, the dynamic model for the PV panel is the same as that was
presented in Eqs. (1)–(5). The dynamic performance of the Cuk converter and the
PM DC motor is represented by the set of nonlinear ordinary differential equations
(ODEs) in Eq. (24).

pipv = 1

L1

(
vpv − (1 − d)vC1

)

pvC1 = 1

C1

(
(d)iL2 + (1 − d)ipv

)

piL2 = 1

L2
(−(d)vC1 − va)

pva = 1

C2
(iL2 − ia)

pω = 1

J

(
KTia − Tp − Bmω

)

pia = 1

La
(va − Raia − KEω) (24)

Equations (4) and (24) represent the nonlinear state-space dynamic model for
the entire PVPS. The first four formulas in Eq. (24) represent the Cuk converter
supplied from the PV panel. It consists of four passive elements (L1, L2, C1, and
C2), semiconductor diode (Dc), and switch (SW) which is controlled by the duty
cycle (d). The last two formulas in Eq. (24) represent the PM DC motor coupled
with PD pump (constant torque load), where ω is the motor speed (rad/s), KE is the
emf constant (V s/rad), KT is the torque constant (Nm/A), Tp is the load torque (Nm),
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J is the inertia constant (kgm2), and Bm is the viscous friction coefficient (Nm s). The
system dynamic is analyzed by solving Eq. (24) by means of numerical integration
technique (Runge–Kutta) and Eq. (4) by iterative technique (Newton–Raphson).

5.2 Small-Signal Model

The small-signalmodel of the PVpanelwas presented in Eqs. (7)–(15). The converter
and motor dynamics are modeled based on the state-space averaging technique in
[14]. Each variable in Eq. (24) is represented by the superposition of the average
value and the variation as; f = FQ + f̂ where f = {ipv, vpv, vC1, iL2, va, ω, ia, D

}
FQ is the average value of the variable f at the Q-point and f̂ is the variation of f
around the Q-point.

By mixing the PV array, the Cuk converter and the DCmotor models and neglect-
ing the second-order small variations terms, the final small-signal model in state-
space representation for the entire PVPS is described in Eq. (25).

ẋ = Ax + Bu; y = Cx + Du (25)

where x = [ îpv v̂C1 îL2 v̂a ω̂ îa
]T
; u =

[
d̂ ĝ t̂

]T
; and y = [ îpv v̂pv

]T
.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kiv
L1

DQ−1
L1

0 0 0 0
1−DQ

C1
0 DQ

C1
0 0 0

0 −DQ

L2
0 −1

L2
0 0

0 0 1
C2

0 0 −1
C2

0 0 0 0 −Bm
J

KT
J

0 0 0 1
La

−KE
La

−Ra
La

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

; B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

VC1Q

L1

Kgv

L1

Ktv
L1

IL2Q−IpvQ
C1

0 0
−VC1Q

L2
0 0

0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =
[

1 0 0 0 0 0
Kiv 0 0 0 0 0

]
; D =

[
0 0 0
0 Kgv Ktv

]

5.3 Small-Signal Perturbation Analysis

Based on the small-signal model presented before, using Eq. (19) and the following
the state-space averaging technique [14], the steady-state PV current perturbation
with respect to the duty-cycle perturbation is described in Eq. (26).

〈
îpv
〉
= If

〈
d̂
〉

If = − DQBmVC1Q+(1−DQ)(KTKe+BmRa)
(
IpvQ−IL2Q

)

KpvD2
QBm−(1−DQ)

2
(KTKe+BmRa)

(26)
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where DQ, VC1Q , IL2Q , and IpvQ are the steady-state values of the duty cycle, capacitor
(C1) voltage, inductor (L2) current, and PV current at the MPP, respectively.

The average PV voltage and power perturbation for PVPS are the same as those
presented in Eqs. (21) and (23), respectively. Equations (21), (23), and (26) represent
the key design formulas that can be used to choose the proper perturbation size in
the MPPT algorithm for direct-coupled PVPSs.

6 PV Panel Parameters’ Estimation

In order to analyze and solve the developed dynamic models, the equivalent circuit
parameters of the PVmodules need to be estimated. The single-diode model has four
parameters that need to be estimated to match with the practical I–V characteristics
[5]. These parameters are the series resistance (Rs), parallel resistance (Rp), diode
ideality factor (n), and reverse saturation current (I r). In this work, two different
parameter estimation techniques are used and compared to extract the PV module
parameters. The first one is based on mathematical equations and the measurements
of the I–V characteristic’s slope at open-circuit voltage and short-circuit current [13].
The second technique is performed by using GA optimization procedure. The details
of these methodologies and results are discussed in this section.

6.1 Analytical Parameter Estimation

This methodology is mainly based on measuring the slope of the I–V characteristic
of the PV module (given in the datasheet) and some analytical formulas. The first
parameter (I r) is estimated at STC by neglecting the parallel resistance effect in
Eq. (3), as given in Eq. (27). Since I r is a temperature-dependent parameter, its value
at a given temperature (T ) is updated using Eq. (28) [1].

Iro = Isco(
eVoco /nVT − 1

) (27)

Ir|T = Ir|To ·
(
T

To

) 3
n

· e −Eg
n (VT−VTo) (28)

where Eg is the band gap energy; it is the energy that an electron must acquire to
jump across the forbidden band to the conduction band, and it is equal to 1.12 eV
for silicon.

Until this point, the diode ideality factor is unknown and must be estimated. Ideal
diode (n= 1) is assumed in this stage until a more accurate value is estimated later by
trial and error. The series resistance of the PVmodule has a large impact on the slope
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of the I–V curves near the open-circuit voltage. Hence, the value of Rs is calculated
by evaluating the slope

(
dV
dI

)
of the I–V curve at V oc, as indicated in Eq. (29) [22].

Rs = − dV

dI

∣∣∣∣
Voc

−
⎛
⎝ nVT

Ire
(

Voc
nVT

)
⎞
⎠ (29)

The parallel resistance of the PVmodule has a large impact on the slope of the I–V
curves near the short-circuit current. Thus, the value of Rp is calculated by evaluating
the slope

(
dV
dI

)
of the I–V curve published on the datasheet at Isc and substituting in

Eq. (30) [22]. The last parameter is the diode ideality factor, which is estimated by
trial and error, such that its value attains the best match with the I–V curves on the
datasheet.

Rp =
−
(

dV
dI

∣∣
Isc

+ Rs

)

1 + Ir
nVT

·
(

dV
dI

∣∣
Isc

+ Rs

)
· e
(

Rs ·Isc
nVT

) (30)

6.2 GA-Based Parameters’ Estimation

GA is a stochastic search algorithm that emulates biological evolutionary theories
to solve optimization problems [23]. It enables parallel search from a population of
points. Based on the literature, GA shows massive success in estimating the system
parameters in many different applications due to the following reasons [24, 25]:

– It enables parallel search from a population of points. Therefore, it has the ability to
avoid being trapped in a local optimal solution, unlike traditional methods, which
search from a single point.

– It supports probabilistic selection rules, not deterministic ones.
– It behaves well in the case of noisy or stochastic objective function.
– It does not require explicit definitions.
– It is very efficient in the case of cheap cost function (which is our case).

Therefore, GA has been used in this study to extract the best combination of the
parameters, such that the error between the measured (from the datasheet) and the
simulated I–V characteristics is minimum. The settings of the GA are presented in
Table 1. The upper and lower boundaries are selected to cover a wide range for
each variable. These ranges are identified based on the physical representation for
each variable and using the analytical formulas presented in the previous section. A
large number of populations and generations are considered to guarantee finding the
optimum solution. Several runs were carried out to confirm the consistency of the
final results.
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Table 1 Settings for GA parameters’ estimation

Parameter Value

Bounds Variable
[
Rs Rp n Ir

]

Lower [0.00001, 1000, 1, 1 × 10−10]

Upper [0.01, 1 × 1030, 2, 1 × 10−3]

Populations 200

Mutation Uniform 80%

Crossover 0.8

Generations 100

Table 2 BP 4175T PV module specifications at STC

Electrical characteristic Value

Open-circuit voltage (Voc) 43.6 V

Short-circuit current (Isc) 5.45 A

Voltage at maximum power (Vmp@STC) 35.4 V

Current at maximum power (Imp@STC) 4.94 A

Maximum power (Pmax@STC) 175 W

Temperature coefficient of Isc (0.065 ± 0.015)%/°C

Temperature coefficient of Voc −(0.5 ± 0.05)%/°C

Module efficiency 14%

6.3 Parameters’ Estimation Results

The two techniques of parameters’ estimation are utilized to extract the parameters
of the commercial BP 4175T PV module [26]. The electrical characteristics and
specifications of this module at STC [Go = 000 W/m2 at the air mass (A.M) = 1.5
and T o = 25 °C] are given in Table 2.

The two techniques are implemented inMATLABenvironment and applied forBP
4175T PVmodule. The final extracted parameters from each technique are presented
and compared in Table 3. Moreover, the I–V characteristic of PV module is plotted
at STC using the parameters estimated by each technique and compared with the
measured I–V characteristic in Fig. 6. It can be observed that GA technique shows
the most accurate results. GA-based parameters give 4.77% of current error, while
the analytical technique presents 6.45%. The parameters that show the least error
(GA-based) are considered in this work to model the performance of the PVmodule.
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Table 3 Extracted parameters of BP 4175T PV module

Method Rs (�) Rp (�) n I r (A) Current error (%)

Analytical 0.0068 1000.8 1.6 1.45 * 10−6 6.45

GA 0.00657 2.8 * 103 1.51 7.0685 * 10−7 4.77

Fig. 6 Comparison between
I–V characteristic for BP
4175T PV module at STC
from measurement and
simulated using GA- and
analytical based parameters
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6.4 Model Verification Based on Experimental Tests

The system described in Figs. 3 and 5 is implemented, simulated, and tested under
fast variations of climatic conditions. The simulation results are obtained by solving
the developed dynamic models for both systems and comparing their results with the
experimental data from laboratory-scale prototypes. The experimental test setup is
shown in Fig. 7. It consists of a commercial BP 4175T PV array connected to the DC
element (DC bus in grid-connected system and DC motor pump in PVPS) through a
DC–DC Cuk converter and its control. The PV array was emulated by XR375-15.9
Programmable DCMAGNA power supply. The conventional P&OMPPT algorithm
was implemented using DSpace 1104 microcontroller board. The DC–DC converter
is built using HGTG30N60C3D IGBT power switch and FFPF15S60S power diode.
The commercial SKHI 22A H4 R gate driver was considered to drive the IGBT. Hall
Effect LEM voltage and current sensors are utilized to measure the PV voltage and
current. The DC bus was emulated using a DC supply in parallel with resistive load.
The motor pump set was emulated using motor generator set. A PM DC motor was
coupled to a DC generator with a resistive load connected to the generator output
terminals. Adjusting the resistive load changes the load on the PM DC motor. The
nominal values for the chosen system’s components are given in Table 4. The con-
verter switching frequency is 10 kHz, and the perturbation rate is 50 variations/sec.
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XR375-15.9 Programmable 
DC MAGNA Power Supply

DC supply in parallel 
with resistive load

DC-DC Cuk Converter PCB

DSPACE 1104

PV Panel

MPPT
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Sensors 
Board Gate 

Driver

LEM Sensors
SKHI 22A R Driver

Motor-generator set

Fig. 7 Experimental setup of direct-coupled PV power systems

Table 4 Specifications of
hardware components of the
DC–DC converter and PM
DC motor

Component Model/rating

Power IGBT HGTG30N60C3D, 600 V, 63 A

Power diode FFPF15S60S, 600 V, 15 A

Gate driver Hybrid Dual SKHI 22 A/B H4 (R)

Current sensor LA25-NP 713194

Voltage sensor LV25-P 712100

Motor poles 2

Motor speed 4000 rpm

Motor power 250 W

Motor voltage 42 V

Motor current 8.4 A

7 Grid-Connected PV System Results

Thedirect-coupled grid-connectedPVsystemwithP&OMPPTalgorithmwas tested,
and the results are compared with the developed model results, as depicted in Figs. 8
and 9. The figures show the PV power, current, and voltage profiles under the fluctu-
ation of environmental conditions. Figure 8 illustrates the system performance under
the fast variation of irradiance level. As it can be noticed, very good agreement is
noticed between the experimental tests and the simulated data using the developed
models. Moreover, the system dynamics under the fast variation of the temperature
are described in Fig. 9. Good correlation can be observed between the simulated and
measured values.
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Fig. 8 Experimental and simulation results of PV grid-connected system with P&O algorithm
under variation of irradiance level, a PV power, b PV power zoomed, c PV current, and d PV
voltage
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Fig. 9 Experimental and simulation results of PV grid-connected system with P&O algorithm
under variation of temperature, a PV power, b PV current, and c PV voltage

8 Stand-Alone PV Pumping System Results

The direct-coupled PVPS with P&OMPPT algorithm was tested, and the results are
compared with the outcomes from the developed model, as presented in Figs. 10 and
11. The figures show the motor performance under the fast variation of irradiance
level. Figure 10 illustrates the motor power (Pm), voltage (Vm), and current (Im)
profiles. Figure 11 shows the motor speed (Nm) and torque (Tm) profiles. As it
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Fig. 10 Experimental and simulated PVPS performance with P&O algorithm under variation of
irradiance level, a motor power, b motor power zoomed, c motor current, and d voltage
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Fig. 11 Experimental and simulated PVPS performance with P&O algorithm under variation of
irradiance, a motor speed and b motor torque

can be observed, a very good correlation is noticed between the measured data
and the data from the developed models. The results demonstrate the accuracy of
the developed models and their capability to predict the system performance under
different dynamics.
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9 Conclusions

In this chapter, a general approach formodeling the direct-coupled PVpower systems
was presented.Detailed nonlinear dynamicmodels for twoPVsystems are addressed:
grid-connected system and stand-alone PV pumping system. The combination of
nonlinear and ordinary differential equations (ODEs) was developed to represent
the entire PV systems’ dynamics, including a PV generator, DC–DC converter, and
DC element (DC bus in case of grid-connected system and PM DC pump in case
of PVPS). Moreover, the dynamic models were linearized to develop small-signal
models for the same systems. The small-signal models were utilized to investigate
the effect of duty-cycle perturbation on the performance of the PV generator in
terms of power, current, and voltage. The final design formulas for MPPT algorithm
parameters are derived, which can be utilized to decide the perturbation size in the
MPPT algorithm. Two different parameters’ estimation techniques, analytical and
using GA, were utilized to accurately estimate the PV generator parameters. The
developed models were implemented and analyzed in MATLAB environment. The
accuracy of the proposed models was verified based on the simulation data and
experimental tests.
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Abstract Although, the existence of many solar projects in Egypt in previous years,
it is evident that the lack of long-term monitoring for operational behavior and relia-
bility investigation of such systems in Egypt may impede the successful implemen-
tation of the recent Egyptian plan for diversifying its energy source. This chapter
presents a comprehensive status investigation and performance analysis of a pho-
tovoltaic energy system installed at the Faculty of Engineering—Cairo University.
An integrated monitoring scheme is included using a proposed monitoring scheme
that provides increased flexibility if it is compared to traditional schemes that need
particular data logging system and special hardware design. The system with a total
capacity of 5.1 kwp feeds the utility via grid-tie inverter who plays an essential role
in monitoring the health of the system. An additional in-plane solar radiation and
temperature sensors for recording the climatic conditions on the spot of PVES are
erected and configured data are monitored, collected, and analyzed following the
international standards of IEC 61724. The influence of dynamic fluctuations in solar
radiation is taken into account by analyzing the data of three typical operating days
of sunny, average cloudy, and cloudy conditions. The collected data help in conceiv-
ing the status and the health of each system’s component. The impact of the newly
installed PV system on the electrical network is also initially investigated at the
inverter level. A comparison of the system performance under study with other mon-
itored PV systems reflects good matching and large potential of the newly installed
system in the subsequent years.
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1 Introduction

Recent years have witnessed an increased interest in installing and operating PV
energy systems either for regions deprived of electricity or to support and diversify
the power sources fed to the grid. This led to more technical research that facilitates
the control and the integration of such system within the existing electrical network;
see, for instance, [1–3]. Egypt has average solar insolation of over 2000 kWh/m2

which is double the energy produced from the sun in a square meter in Germany.
This means that installing a solar plant in Egypt would result in higher power pro-
duction rate if it is compared with other places around the world. Egypt’s energy
supply mix is heavily reliant on unsustainable energy resources having a composi-
tion of around 88% fossil fuels while the remaining 12% are mainly hydropower
from the Aswan High Dam. The country’s energy mix has not really earned the title
of the mix as it is solely focused on conventional power sources despite the abun-
dance of other resources such as solar and wind [4]. In February 2008, the Egyptian
Supreme Council of Energy has put his ambitious directive to satisfy 20% of the
generated electricity by renewable energy by 2020. This was followed by approving
the Egyptian Solar Plan in July 2012 that targets to install 3500 MW by 2027 [5].
To be in-line with these directives that will certainly lead to drastically change in the
Egyptian power system and the energy market, the research team in the automatic
control group in Electrical Power andMachines Department, CairoUniversity, Egypt
took actions to stimulate the new power system environment and to understand the
operational behavior of the two basic renewable energy-based generation systems.
A research project has been funded by STDF—Egypt in late 2015—to install two
photovoltaic energy systems to work in two separate modes— grid-connected and
stand-alone—in Automatic Control Laboratory in the Library Building at Faculty of
Engineering, Cairo University. This project aims to promote research in the area of
PV energy system (PVES) monitoring, operation, and control with special consider-
ation to the grid integration. The gained experience during the project stages in the
design, installation, and operational monitoring allows showing the benefits of this
technology and evaluating its impact on both utility and autonomous scale.

In general, the behavioral evaluation studies of such systems [6–12] are deemed
to be the best method to comprehend the performance and to determine the behavior
of PV systems in real climatic circumstances. In most cases, these evaluation studies
could result in setting the prospect of these energy-producing systems in a region [6]
and may assist in maintaining, operating, and designing novel PV power system as
well [7]. In [8], the real behavior of two PV generation stations connected to the grid
located in northern Italy that utilize asymmetrical panel technologies is tested. The
paper initially assessed the real performance of these stations and the effects of chang-
ing environmental conditions and the variation of panel behavior as well as electrical
parts on its operational performance. In [9], the same direction is assumed where
comparison of the performance for two grid-tie PVESs erected in the same region is
performed. The suitable choice of system’s sections and parts such as PV modules,
converters, and wiring system are emphasized. In [10], a very small photovoltaic
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system that is integrated with the low-voltage distribution panel of an Irish building
is analyzed. The results give premeditation of system performance that assists in
estimating the economic and environmental impacts on such energy systems.

Although most of the above-mentioned studies are carried out for small-scale
PV systems, the work in [13] tested and checked the operational behavior of
relatively large-scale PV energy system (3 MW) in India. The results determined the
fluctuation in the PV system output under different daily environmental situations.
Performance analysis of 3.6 kW grid-connected photovoltaic generation unit in
Egypt is studied in [14]. This work only gives some preliminary performance
indices for the proposed PV system and did not use adequate performance indicators
following the IEC 61724 standard [15].

Back surface temperature, front surface soiling, cells’ mismatch, and losses are
reported in several papers [16–18] to have a direct influence on PVES operational
performance. The losses mechanism for any PVES can be split to capture losses
which are mainly due to the attenuation of the incoming solar radiation and system
losseswhich aremainly due towiring and inverter losses. The calculations done in this
chapter aremainly based on three essential parameters on understanding the behavior
and characterizing the performance of the installed PVES under Egypt climatic and
environmental conditions. The base parameters used are the array, reference, and
the final yield. These parameters are calculated according to the data collected for
the energy produced by the PV generator, the energy output of the inverter, and the
energy injected into the grid. The capture and the system losses are computed and
hence the performance ratios are produced. Other numerical calculations are also
performed that enable us to determine the efficiencies of each system component
and to judge the health of the system. The chapter also stresses the importance of the
monitoring scheme to investigate the operational status of each component in the PV
system. From the collected data, the voltage rise and fluctuations at the inverter level
are found to be within the permissible standard limits. In general, the work in this
chapter provides a technical description of grid-tie and the off-grid PV systems and
an initial evaluation for the performance of the grid-tie PV system for the period of
6months. The key advantages of this work are two folded. The first one is monitoring
the status of a residential scale low-voltage grid-tie-based photovoltaic generation
system in order to ensure the health of the system and to improve its components in
case of failure. Hence enhance its utilization factor and its annual yield. The second
one is evaluating the system operational performance which may serve as a useful
data for the low-scale PV projects on the upcoming years in Egypt.

2 System Description

The complete hardware setup for this project in both systems includes
PV arrays—grid-tie inverter—stand-alone inverter—charge controller—battery
pack—PLC—RTU—local loads—switches—measuring transducers and smart
energymeters. These units are assembled in a control panel as shown in Fig. 1, except
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Fig. 1 Control panel for two PVES

Fig. 2 Grid-tie PV arrays

thePVarrays inFigs. 2 and3which aremountedon the roof topof the library building.
Local loads and the battery pack are placed inside the Automatic Control Laboratory.

The grid-tie PV string consists of twenty poly-crystalline modules of type
SUNTECH [19] that are covering a total area of 32.5 m2. Each module comprises
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Fig. 3 Stand-alone PV arrays

Table 1 Featured parameters of the PV array and module

PV module PV array

Parameter Value Parameter 6635 Value

Rated max. power (Pmax) 255 W Rated Max. power (Pmax) 5200 W

Number of solar cells 60 Number of modules in array 20

Area Total PV area 35.5 m2

Open-circuit voltage (Voc) 37.6 V Array open-circuit voltage 752 V

Short-circuit current (Isc) 8.76 A Array short-circuit current 8.76 A

Voltage at Pmax (Vmp) 30.8 V Array voltage at Pmax (Vmp) 616 V

Current at Pmax (Imp) 8.25 A Array current at Pmax (Imp) 8.25 A

60 solar cells connected in series. The output power of each used module is 255 Wp
and the modules are connected in series to yield 752 DC output voltage. Both the
PV array and the PV module featured parameters for this system are summarized
in Table 1. A three-phase inverter of type KOSTAL/PICKO 4.2 [20] as shown in
Fig. 4a, with input DC minimum and maximum voltages of 180–950 V and output
three-phase AC voltage of 380 V, is connected to the PV array which will ensure
complying with the 50 Hz low-voltage board in the laboratory. The maximum power
of PV inverter is 4.2 kWp. The tilt angle of the modules is 30° facing south according
to the orientation of the library building which located at latitude of 30°4′58′′ and
longitude of 31°16′58′′. This location receives 1985 kWh/m2 as a total sum of global
radiation per annum and has an annual average temperature of 23.5 °C. The total
capacity of the system is 5.1 kW with a maximum injected current from the inverter
to be 9 A and output voltage range from 184 to 253 VAC with frequency 50 Hz.
The three-phase Kostal-PIKO 4.2 inverter is used to feed a synchronized AC energy
directly into the low-voltage distribution board of the Automatic Control Laboratory
which is connected to the grid via 11 kV/380 V transformer with fixed tap changing
steps. The inverter has a rated maximum efficiency of 96% and maximum AC power
of 4200 W [20].

The single-line diagram of the grid-tie PVES is shown in Fig. 5. It shows
smart meters used for metering and monitoring the following parameters:
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Fig. 4 aKOSTAL-PIKO4.2 grid-tie inverter and b SIEMENS, SENTRONPAC3200 Smart energy
meter

Voltage—phase to phase, phase to neutral/current/power/power factor/THD per
phase/frequency/three-phase average voltage and currently, the details for these
meters are presented in the next section. The system is also protected against over-
loading and short circuit using DC miniature breakers of rating 10 A.

3 Monitoring Schemes Description

The last 15 years have witnessed a regular increase in the statistical average per-
formance ratio of a novel PV installation especially in moderate climates. This
improvement is mainly due to increase relying on advanced monitoring schemes
and the continuous analysis of the collected data. A search about the word “moni-
toring” for PV systems in the IEEExplore database reflects more than 1000 articles
in the period from 2010 to 2016 (see for instance [21]). The main purposes of a
monitoring scheme are to follow up on the energy yield, to assess the PV system
performance, and to timely identify design flaws or malfunction [22].

A separate monitoring scheme for the proposed grid-tie PVES is fully designed to
provide useful information about various system operational aspects and the future
procedures to refine and enhance their performance. This monitoring scheme is
designed to be very flexible, practical, and reliable for real-time monitoring of the
developed PV system. It is very cheap in cost if it is compared to the traditional
solutions that require dedicated data logging unit and specialized hardware. In the
following section, details about this monitoring scheme are presented.
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Fig. 5 Single-line diagram of grid-tie PVES

3.1 Monitoring Scheme for the Grid-Tie PVES

The designed monitoring scheme for the first PV system is basically depending on
the grid-tie inverter of type KOSTAL version PIKO 4.2. As shown in Fig. 6, the
proposed monitoring scheme gets avail from the effective and intrinsic monitoring
functions and capabilities of the inverters and their Internet connectivity that enable
wide range measurements for the operational parameters of the system. The inverter
successfully collects—every 10 min—various kinds of PV measurement data such
as PV system production and the climatic ambient conditions and stores it for further
processing. The sampling period, the averaging period, and the type of collected
data depends mainly on the type of the inverter and its configuration [23]. A PC is
connected to the inverter via Ethernet communication cable to download the data for
analysis. Dedicated inverter software is used to facilitate communication between
the inverter and the PC. The operational range for the inverter DC input voltage is
180 Vminimally and 950 Vmaximally with anMPPT add-on feature, the maximum
power of PV inverter is 4.2 kWp and it has one string that can provide the DC link.
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Fig. 6 Monitoring scheme for grid-tie PVES

Table 2 Monitored
parameters

Parameter Unit

Total in-plane radiation W/m2

Ambient temperature °C

PV module surface temperature °C

DC voltage × 2 V

DC current × 2 A

DC power × 2 kW

AC voltage per each phase V

AC power per each phase kW

AC current per each phase A

Total AC power kW

PV energy supply kW h

Energy supply from utility grid kW h

The system is also equipped with a smart energymetering facility of type SIEMENS,
SENTRON PAC3200 [24], that enables metering and monitoring various variables
in the proposed PV system. Figure 4b shows the smart energy meter used in this
system and Table 2 shows the main monitored parameters for this system.
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Fig. 7 Monitoring scheme for autonomous PVES

3.2 Monitoring Scheme for the Autonomous PVES

Unlike the monitoring scheme of the grid-tie PV system that mainly depends on the
inverter capabilities and features to monitor the status of the system, the designed
monitoring scheme for the autonomous PV system is basically depending on voltage
and current sensors. As shown in Fig. 7, the proposed monitoring scheme gets data
from the PLC that displayed on HMI so it connect to sensors that enable wide range
measurements for the operational parameters of the system DC voltage and DC
current of PV array, DC voltage and DC current of batteries and AC output voltage
and AC output current. The maximum DC input voltage of isolated inverter is 45 V,
and maximum power of inverter is 1300 VA. This inverter feeds single-phase loads.
The system is also equipped with the same smart energy metering facility of type
SIEMENS, SENTRON PAC3200.

4 Status Monitoring

In this section, the operational behavior and the health of the erected grid-tie PV
systemare completely expressedbypresenting sample data for sunny, average cloudy,
and heavy cloudy days over the studied period. The grid-tie PVES has been put into
operation since June 2016 and themetrological data at the PV site such as themonthly
average daily in-plane radiation, ambient, and cell temperatures are calculated for the
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period of the study and presented in Figs. 8 and 9. Figure 8 represents the monthly
average daily global in-plane insolation (Ii,m) and the Fig. 9 represents monthly
average daily ambient (TA,m) and module temperatures (Tb,m).

The monitoring scheme collects and stores totally more than 15 variables. Status
investigations for the whole PVES of as well as the main components are represented
in Figs. 10, 11, 12, and 13. The PV array status for different daily climatic conditions
is shown in Fig. 10a–f over the studied period. Figures 11 and 12 represent the inverter
behavior subjected to PV array inputs as depicted in Fig. 10. Figure 13 depicts the
overall daily energy output injected to the grid by the PVES along over the studied
period.

4.1 Status Monitoring for PV Array

The following points are noticed from Fig. 10a–f:

(1) The PV array output DC current and voltage show the same nature and trend
despite the big fluctuations in the climatic conditions for the chosen days from
heavily cloudy to average cloudy to sunny days.
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Fig. 10 PV system status monitoring, time versus DC voltage with radiation, and daylight DC
current for a, b Sunny day, c, d average cloudy day, and e, f heavily cloudy day

(2) The maximum DC output voltage for an average cloudy day occurred at
27/10/16; this day represents a higher rate of change of the radiation among
the other presented days.

(3) The amplitude of fluctuations in the output DC current increase with the increas-
ing the degree of variability in the atmospheric conditions (in-plane irradiance)
from sunny to heavily cloudy days.



474 A. H. Besheer et al.

210

215

220

225

230

235

240

245

250

255

Vo
lta

ge
(V
)

Daylight Interval (10 min. Readings)

Vph-a Vph-b Vph-c

Sunny Average Cloudy Heavily Cloudy

8/11/16 27/10/16 28/1/17

Fig. 11 Three-phase voltage magnitudes at the inverter output

0

1

2

3

4

5

6

7

Cu
rr
en

t(
A)

Daylight Intervals (10 min. Readings)

Iph-a Iph-b Iph-c

Sunny Average Cloudy Heavily Cloudy

8/11/16 27/10/16 8/1/17

Fig. 12 Three-phase current magnitudes at the inverter output

0

5

10

15

20

25

30

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

En
er
gy

(K
w
h)

Days

Fig. 13 Daily distribution of the PVES output energy over the period of study



Status Monitoring and Performance Investigation … 475

4.2 PV Inverter Status Monitoring

Three- phase current and voltagemagnitudes at the output of the inverter are drawn in
Figs. 11 and 12. The voltage magnitude is approximately constant during the period
of campus peak load demand (8 am–4 pm) while the output voltage of the inverter
shows higher values at the period of light or no load (night and early morning). At
this period of day, the tap changer of the transformer that feeds the L.V. distribution
board (grid) tied with the PV system is set to be high. In general, it is noticed that the
voltage magnitude in each phase along with the period of study is within the inverter
output voltage constraints range (180–253 v) as per inverter user manual [20]. The
three- phase current values at the output of the inverter are strongly related to the
solar radiation variations. The inverter current values reach its daily peak with daily
peak radiation values at most of the days (clear sunny and average cloudy days).
The variations in the current values increase with increasing fluctuation in the solar
radiation (heavily cloudy day). These rapid fluctuations—if it exceeds the standard
limits—may impact the level of voltage and lead to voltage flicker especially in a
high cloudy transients days [25].

4.3 The Whole Grid-Tie PV System Status Monitoring

In addition to Fig. 13 that reflects the daily distribution of the overall energy produced
by the PVES during the period of the study, the health of the implemented PV system
is completely investigated via comparing the total net benefit from the system in
terms of DC power yield from the PV array and the injected AC power yield from
the inverter to the local network with the energizing input to the system in terms of
total in-plane insolation on a daily basis. Figure 14 shows time versus AC power,
DC power, and solar radiation. This figure expresses complete conformity between
the daily solar radiation, DC power, and AC power injected from the inverter to the
L.V distribution network. This is completely true under any variation of the climatic
conditions ranged from clear sunny day to average cloudy and heavily cloudy day.
The AC power variations are very high with increasing cloud transients. This power
fluctuationmay yield large voltage fluctuation that may lead to significant line losses.

One of the PV system interconnection requirementswith L.V distribution network
imposed by regulatory standards is called voltage quality standard. This criterion is
usually tested by checking the operating service voltage range from the PV system
to be within certain limit. According to the Egyptian codes [26], the operational
voltage range of a solar plant at the point of common coupling with the grid should
be (0.85 pu–1.1 pu) for unlimited time period of operation. This range can also be
increased to (1.1 pu–1.15 pu) for only 30 min of operation. In our case, this standard
is investigated via calculating the variations in the monitored three- phase voltage
magnitudes. The average and the maximum per unit values of voltage variation for
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Fig. 15 One-day PV DC terminal output power before and after cleaning maintenance

the three phases voltages a, b, c are (1.076, 1.071, 1.069) and (1.14, 1.14, 1.13),
respectively, which are within the specified voltage variation range in [26].

From thewhole collected data of the ninemonths,we noticed that these data reflect
twocategories of the results. Themeasuredvariables showa largevariation in its value
between the first three months after installation and the next six months afterward.
The variation was due to the high rate of dust accumulation at Giza, Egypt—where
the system erected—at this period of the year and rarely cleaning maintenance rate
for the PV panels. Moreover, the PVES is installed very close to a highly crowded
and heavy traffic main road. A comparison between PV DC terminal output power
before and after cleaning maintenance shown in Fig. 15 reflects approximately 50%
loss in the panel efficiency along over the day due to dust accumulation on the front
surface of the PV array.
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5 Performance Indices

The results of subtask 2, “Analytical PV System Assessment” of the collaborative
work within the International Energy Agency’s Photovoltaic power System program
IEA PVPS task 13 on the performance and reliability of Photovoltaic systems [27]
identified different performance relationships that cover thewhole energy conversion
chain for grid-tie PVES that may help in determining design errors and common
operational faults. It showed that the performance relationships for such systems can
be checked in different operational levels. System level and array level constitute the
main levels to check the overall efficiency and the thermal behavior of the system.
One of the most important indices to be determined in this context what is called
performance ratio. The European commission (JRC/ISPRA) [28] set a definition for
the performance ratio of the PV plant which will be used in this chapter. It includes
the capture (the array) losses and the system losses, and it enables evaluating the
overall behavior of the PV plant as well as comparing various PV system qualities in
different geographical locations. It is also helpful in identifying the need for detailed
inspection of the PV system to avoid common problems such as soiling and defective
components that need to be replaced. In this chapter, because the system is still in
its initial operation phase and historical annual data are still not available (only six
months of operation), some of the performance relationship will only be presented
here as initial indicators for system behavior and as a characterization for the health
of the operation. All the calculated performance indices in this chapter are referred
to the IEC standard 61724 [15].

5.1 Results and Interpretation

The monthly output energy of the PV array (Ea) and the total injected energy into
the grid from the PV system (Einj) are shown in Fig. 16.

As it can be reflected from Fig. 16, the PVES produces a total 3145.05 kWh of
energy but provides 2918.66 kWh of energy to the grid during the period of study.
The difference between the energy production and the energy injected to the grid is
ranged between 25 and 75 kWh and it represents the energy losses in the system. The
lower energy production in this period was in month of December with 437.37 kWh
of energy and the maximum energy production was 597.9 kWh in the month of
October.

Remark 1 • The number of working days for the system in October is more than
the same number in other months by one day so the total monthly array/injected
energy in October is slightly more than its value in September although higher
input radiation in September.
Figure 17 represents the monthly average system yields (array, reference, and

final yield). These performance indices can be calculated according to (1–9).
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For the daily and monthly array yield

EDC,d = τT ×
∑

day

VDC,τT ∗ IDC,τT (1)

where τT represents the sampling interval in hours over the daylight interval of the
day (in our case it is 1/6),

∑
day

denotes the summation over the day and EDC,d represents

daily total DC output energy (kWh).

EDC,d = 1

n

n∑

d=1

EDC,d (2)
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where EDC,d represents monthly average daily DC output energy (kWh), EDC,d rep-
resents daily total DC output energy (kWh), and n is the number of working days
per month (range from 24 days to 27 days).

Ya,d = EDC,d

P0
(3)

where P0 is the rating capacity of the PV system

Ya,m = Ya,d ∗ n (4)

For the daily and monthly final yield

EAC,d = τT ×
∑

day

PAC,τT (5)

EAC,d = 1

n

n∑

d=1

EAC,d (6)

where EAC,d represents monthly average daily AC output energy (kWh) and EAC,d

represents daily total AC output energy (kWh).

Yf,d = EAC,d

P0
(7)

Yf,m = Yf,d ∗ n (8)

For the monthly reference yield

Yr,m = Ii,m
Gr

(9)

where I i,m is in-plane solar insolation (kWh/m2) and Gr is 1 kW/m2.
The array and the final yields are the highest in months of September and October

because thesemonths reflect themaximum reference yield (the average inclined solar
radiation was seen in Fig. 10) which leads to increasing the energy production and
the energy injected to the grid (see Fig. 15). The capture and the system losses are
calculated from Eqs. (10)–(11) and compared to the final yield as shown in Fig. 18
to characterize the performance of the PVES.

LC,m = Yr,m − Ya,m (10)

LS,m = Ya,m − Yf,m (11)
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Fig. 18 Comparison between final yield, capture, and system losses

According to the IEC 61724 [15], the best way to characterize the performance
of the PV system is to calculate its performance ratio that characterize the impact
of the overall losses on the system’s rated yield. During real operating conditions,
The PR describes how close a PV system performs in an ideal manner. The monthly
average daily PR can be calculated using (12)–(13).

PRd=Yf,d
Yr,d

(12)

where PRd is the daily PR

PRm = 1

n

n∑

d=1

PRd (13)

where PRm is the monthly average daily PR.
We noticed that in this type of energy system, the losses is directly related to the

final yield and as the final yield started to increase as in the month of September,
the total system losses start to increase with special attention to the system losses in
months of October and September. These twomonths exhibit more system losses due
to the influence of the ambient temperature on the system’s cabling and the inverter
temperature. The capture losses are also the highest in the month of September due to
the unstable weather conditions in Cairo in this month over the other studied months.

Figure 19 shows the monthly performance ratio for the PVES along with the
studied period. The minimum PR of the system 0.63 was achieved in the month of
September due to the increase in the overall system losses (see Fig. 17) while the
maximum PR 0.82 was achieved in the month of February due to the improvement of
both the capture losses and the inverter efficiency (see Fig. 19). The results are shown
in Fig. 19 reflect good matching with other similar PVES in other world places. The
calculated performance ratio of the new grid-tie PVES seems to be comparable with
its value in the moderate climate such as Germany [29].
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Fig. 19 Monthly performance ratio for the PVES along over the studied period

Fig. 20 Monthly average
efficiency of PIkO inverter
based on daily average value
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5.2 More Performance Indicators

The IEC61724 states other performance parameters to characterize the overall behav-
ior of the PVES. In this section, the inverter’s and system’s efficiencies as well as the
capacity factor are calculated to complement the operational behavior characteristics
and evaluate the performance of the installed PVES under Egypt climatic conditions

Inverter Efficiency

The monthly inverter efficiency is the ratio of the monthly total AC output energy
to the monthly total DC input energy and it can be calculated from (14). Figure 20
shows the variation of this efficiency over the period of study.

ηinv,m =
∑n

d=1 EAC.d∑n
d=1 EDC,d

(14)

Under the real environmental operating conditions of Cairo over the studied
period, the maximum inverter efficiency is found to be 93.8% and it takes place
in November because the system losses (cabling + inverter) is minimal while the
lowest value is 92.3% happened in September due to higher ambient temperature
which affect the performance of the inverter.
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Fig. 21 Average capacity
factor per month
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Remark 2 (a) Despite the reduction recorded on the surrounding temperature
(ambient) fromNovember to December, the maximum efficiency of the inverter
was achieved in November.

(b) This is explained by noticing that the back surface temperature of the PV
modules is approximately the same in both months of November and Decem-
ber so there is no tangible drop in cell temperature, hence, the output DC
power/energy—from it—is approximately the same, however the reference
yield (Fig. 17) or the radiation of November is higher than its counterpart in
December (Fig. 10). This makes the final yield in November slightly higher than
the December (Fig. 17); hence, there is an increase in maximum efficiency of
the inverter in November.

Capacity Factor

The monthly capacity factor (CF) is defined as the ratio of actual annual/monthly
energy injected to the grid by the PV system (Einj) to the total installed capacity of
the PV system multiplied by a number of hours per year/month [30, 31].

CFm =
∑n

d=1 EAC,d

P0 ∗ 24 ∗ n
(15)

It relates the actual injected output of the PV plant to the theoretical maximum
output of the plant that would be generated if it operated for 24 h per day for a year.
Figure 21 reflects that the average capacity factor of the system per month is 15.55%;
the highest value of the capacity factor is 17.5% in October due to the increasing
energy production and the energy injected to the grid (see Fig. 15). The lowest final
yield of the PV system in December leads to 12.76% CF which is the lowest during
the period of study.

System Efficiency

The overall efficiency of the whole PV system including every component can be
calculated from the total input radiation incident on the PV array area and the total
output energy injected to the grid. Both values are readily available from the attached
monitoring scheme and the overall system efficiency is calculated using (16).
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Fig. 22 Average system
efficiency per day for each
month

0%

10%

20%

Sept2016 Oct2016 Nov2016 Dec2016 Jan2017 Feb2017

Effi
ci
en

cy
%

ηs,m =
( ∑n

d=1 EAC,d∑n
d=1 Id ∗ A

)
× 100% (16)

Figure 22 shows the average system efficiency is 11% and the highest value is
12.8% which is achieved at the month of February due to better performance ratio in
this month which generally reflects low overall losses and better utilization of solar
irradiance and improvement in system component efficiency (see Fig. 20).

Remark 3 (a) The results of the PVgrid-tie system inEgypt seem to be comparable
with other similar installed systems in different countries all over the world. The
following table shows a comparison results for three essential indices (system
efficiency, inverter efficiency, and performance ratio)

Country η Inverter (%) η PV system (%) PR Reference

Egypt 92–94 10–12.8 0.63–0.82 Present study

Italy 90–91 3.7 0.66 [32]

Spain 89.5 13.7 0.69 [33]

Brazil 91 3.7 0.5–0.81 [34]

Ireland 87 7.5–10 0.6–0.62 [35]

(b) The behavior of the system in the first period (6 months) is acceptable and the
effect of the losses on the system rated output matches with similar systems in
Italy, Ireland, and Spain.

6 Conclusions

The lack of reliable monitoring schemes for PV projects may lead to system failure
andwill certainly hinder thewide-spread use of such systems. This chapter represents
a fully designed 5.1 kW rooftop grid-tie PV energy system along with a complete
status monitoring scheme. The system has been put into operation since June 2016
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and it was subjected to cleaning routine since September 2016. The operational status
of the system is totally investigated via the inverter-based data acquisition system.
The monitoring scheme yields a big data file that represents status variations every
10 min for 19 parameters along over the daylight interval for the studied period.
The data of three typical operating days (Sunny—average cloudy—heavily cloudy)
are extracted and analyzed to check the health of each part of the system and to
characterize the status and the systemoperational behavior under various atmospheric
conditions. Moreover, the impact of the newly installed PV system on the network
is initially investigated at the inverter level. The voltage rise and fluctuations at the
low-voltage distribution board at which the PV system is connected found to be
within the permissible limits of the Egyptian code for grid-connected solar energy
plants.

Based on the monitored variables and the collected data for the grid-tie PVES,
the total DC energy yield from the system during the period is 3145.05 kWh, while
the equivalent energy fed to the grid is 2918.66 kWh, and these figures reflect per-
formance ratio that ranges from 0.82 to 0.63. The average system, inverter, and array
efficiencies are found to be 11, 93.1 and 14.4%, respectively. The average capacity
factor per month is found to be 15.55%. The distribution of the capacity factor during
the period of study reflects that increasing this factor will directly lead to increase the
net energy injected from the system to the grid. The following concluding remarks
from the status monitoring of the PVES can be described as follows:

(a) The integrated nature of the whole system (the PV panels, inverter, cabling, and
other accessories) leads to special performance characteristics that tend to be
different than the nature of each component in the system separately.

(b) For the inverter, we noticed that the characteristics of the inverter under Egypt
climatic conditions can be described according to the following two points:

• In a relatively hot month like September, an increase in the ambient temper-
ature leads to a reduction in the inverter efficiency and vise versa.

• In a relatively modest months like October and November, This is not true
because of the very small reduction in module temperature (approximately
constant) and small increase in the final yield.

(c) For the PVpanels,we noticed that the performance of the panels under Egypt cli-
matic conditions is matching the standard performance of PV where the chang-
ing of the temperature and the radiation affect heavily the performance of the
PV panels.

(d) For the whole PVES, the captured losses affect directly the performance ratio
of the overall system which indicates the importance of routine cleaning for the
PV panels in a weather like Egypt

In future, more investigation on system impact on the LV side of the electric
network in terms of power quality indices such as voltage quality (voltage flicker,
voltage unbalance, and voltage sag/swell) and harmonics (THD) will be performed
based on the proposed monitoring scheme (inverter and smart meter).
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